prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN Revision date: June / 2023

Printing Date: June 01 2023

1 IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

1.1 Product identifier

Substance name:	Mercury {German Red Mercury 20/20 258 99.9999999% - [9N]}
EC name:	Mercury
IUPAC name:	Mercury
Chemical formula:	Hg { Hg2 Sb207 }
CAS:	7439-97-6
EC No.:	231-106-7
Molecular Weight:	200.59 g/mol [BK-20/20 – 20.2 gam]
REACH Registration number:	01-2119548380-42-0000

1.2 Relevant identified uses of the substance or mixture and uses advised against

1.2.1 Relevant identified uses

Relevant identified industrial uses of mercury:

- IU 1 Waste recovery
- IU 2 Production of phenyl mercury carboxylates- IU 3 Chlor-alkali electrolysis
- IU 4 Production of mercury dispensers for discharge lamps
- IU 5 Production of gas discharge lamps
- IU 6 Production of dental amalgam

Please refer to section 16 for an overview table of identified uses for which an exposure scenario is provided as an annex.

1.2.2 Uses advises against

IU 9: Production of thermometers and measuring devices intended for sale to the general public

1.3 Details of the supplier of the safety data sheet

Name: Address:	UNIVERSAL Chemical Trading GmbH Waldweg 4 Dollern 21739, Germany	
Phone N°:	+49-1521-719-3144	
Fax N°:	+49 - 413 -497-2008	
E-mail of competent person responsible for SDS in the MS or in the EU:	info@uctr-gmbh.de / <u>https://uctr-gmbh.de</u>	
1.4 Emergency telephone number		

European Emergency N°:	112	
National center for Prevention and Treatment of Intoxications N°:	Waldweg 4 Dollern 21739, Germany +49 761 19241	
Emergency telephone at the company	+49-1521-719-3144 mobile: N/A	
Available outside office hours: Office hours:	⊠ Yes □ No 8:00 – 17:00 hours	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN Revision date: June / 2023

Printing Date: June 01 2023

2 HAZARDS IDENTIFICATION

2.1 Classification of the substance

The classification information given below is the harmonized classification and labelling as listed in Annex I and Annex IV of Commission Regulation (EC) No 790/2009 (amending Regulation (EC) No 1272/2008) and in accordance with the classification information given in the REACH registration dossier (version 2022) for mercury.

2.1.1 Classification according to Regulation (EC) No 1272/2008 [CLP/GHS]

Acute toxicity - inhalation:

Acute Tox. 2 - H330: Fatal if inhaled.

Reproductive toxicity:

Repr. 1B – H360: May damage fertility or the unborn child. Specific effect – H360D – May damage the unborn child.

Specific target organ toxicity – repeated:

STOT Rep. Exp. 1 - H372: Causes damage to organs through prolonged or repeated exposure (affected organs unknown).

Hazard to the aquatic environment:

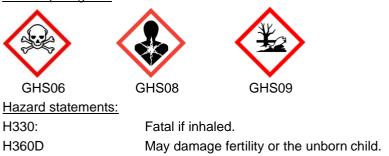
Aquatic Acute 1 - H400: Very toxic to aquatic life. Aquatic Chronic 1 - H410: Very toxic to aquatic life with long lasting effects.

2.1.2 Classification according to Directive 67/548/EEC

T+; R26 - Very toxic; very toxic by inhalation.

T; R48/23 - Toxic; Toxic: danger of serious damage to health by prolonged exposure through inhalation.

Repr. Cat. 2; R61 - May cause harm to the unborn child.


N; R50/53 - Dangerous to the environment; very toxic to aquatic organisms, may cause long-term effects in the aquatic environment.

2.2 Label elements

The label elements given below are based on the classification according to the criteria of Regulation (EC) No 1272/2008, as listed above.

2.2.1 Labelling according to Regulation (EC) 1272/2008

Signal word: Danger Hazard pictogram:

11070	
H372:	Causes damage to organs through prolonged or repeated exposure.

H410: Very toxic to aquatic life with long lasting effects.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN	
Revision date: June / 2023	Printing Date: June 01 2023

Precautionary statements:

P201:	Obtain special instructions before use.
P273:	Avoid release to the environment.
P304 + 340:	IF INHALED: Remove victim to fresh air and keep at rest position comfortable for breathing.

The number of precautionary statements has been reduced to three to appear on the labels.

2.3 Other hazards

The substance does not meet the criteria for PBT or vPvB substance. No other hazards identified.

3 COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Main constituent Name: Mercury CAS: 7439-97-6 EC No.: 231-106-7 REACH Registration No: 01-2119548380-42-0000 Concentration: >99.99%

<u>Impurities</u> No impurities > 0.1 % (w/w) relevant for the classification and labelling of the substance.

4 FIRST AID MEASURES

4.1 Description of first aid measures

General advice

- In all cases, immediately call a poison center or doctor/physician.
- Get medical advice/attention if you feel unwell.
- Instantly remove any clothing soiled by the product.

Following inhalation

- Get medical aid immediately.
- Remove from exposure and move to fresh air immediately. Keep at rest in a position comfortable for breathing.
- If breathing is difficult, give oxygen.
- Do NOT use mouth-to-mouth resuscitation.
- If breathing has ceased apply artificial respiration using oxygen and a suitable mechanical device such as a bag and a mask.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

Printing Date: June 01 2023

Following skin contact

- Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes.
- Get medical attention immediately.
- Wash clothing before reuse.
- Thoroughly clean shoes before reuse.

Following eye contact

- Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally.
- Get medical attention immediately

Following ingestion

- Do NOT induce vomiting.
- Never give anything by mouth to an unconscious person.
- Get medical attention immediately.

Notes to the physician

- The concentration of mercury in whole blood is a reasonable measure of the body-burden of mercury and thus is used for monitoring purposes. Treat symptomatically and supportively. Persons with kidney disease, chronic respiratory disease, liver disease, or skin disease may be at increased risk from exposure to this substance.
- Antidote: The use of d-Penicillamine as a chelating agent should be determined by qualified medical personnel. The use of Dimercaprol or BAL (British Anti-Lewisite) as a chelating agent should be determined by qualified medical personnel.

4.2 Most important symptoms and effects, both acute and delayed

- Mercury is highly toxic (fatal via the inhalation route)
- Mercury accumulates in body tissues and organs
- Mercury may damage the unborn child and it causes damage to organs through prolonged exposure.
- 4.3 Indication of any immediate medical attention and special treatment needed

Follow the advises given in section 4.1

5 FIRE FIGHTING MEASURES

- 5.1 Extinguishing media
- 5.1.1 Suitable extinguishing media
- Use any means suitable for extinguishing surrounding fire.
- 5.1.2 Unsuitable extinguishing media
- Not applicable.

5.2 Special hazards arising from the substance or mixture

- Undergoes hazardous reactions in the presence of heat and sparks or ignition.
- Smoke may contain toxic mercury or mercuric oxide.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN Revision date: June / 2023

Printing Date: June 01 2023

5.3 Advice for fire fighters

- In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full face piece operated in the pressure demand or other positive pressure mode.

5.4 Additional information

- Mercury vapors and mercury oxides generated during fires involving this product are toxic.
- Do not allow water runoff to enter sewers or waterways.
- Not considered to be an explosion hazard.
- NFPA Rating: (estimated) Health: 3; Flammability: 0; Instability: 0

6 ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

6.1.1 For non-emergency personnel

- Do not breathe vapour.
- Provide ventilation.
- Clean-up personnel require protective clothing and respiratory protection from vapour.
- Use personal protective equipment as required.
- Refer to protective measures listed in section "Handling and storage" (section 7) and "Exposure controls / personal protection" (section 8).

6.1.2 For emergency responders

- See section 6.1.1.

6.2 Environmental precautions

- Avoid runoff into storm sewers and ditches which lead to waterways.
- Avoid release to the environment.
- If the product contaminates rivers and lakes or drains inform respective authorities.

6.3 Methods and material for containment and cleaning up

- Provide ventilation.
- Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container.
- Avoid runoff into storm sewers and ditches which lead to waterways.
- Clean up spills immediately, observing precautions described in section 7.

6.4 Reference to other sections

Refer to protection measures listed in section 7 and 8. For more information disposal considerations, please check section 13 of this safety data sheet and the attached annex.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

Printing Date: June 01 2023

7 HANDLING AND STORAGE

- 7.1 Precautions for safe handling
- 7.1.1 Protective measures
- Obtain special instructions before use.
- Do not handle until all safety precautions have been read and understood.
- Wash thoroughly after handling.
- Remove contaminated clothing and wash before reuse.
- Minimize dust generation and accumulation.
- Keep container tightly closed.
- Do not get on skin or in eyes.
- Do not ingest or inhale.
- Use only in a chemical fume hood.
- Discard contaminated shoes.
- Do not breathe vapour.
- Use personal protective equipment as required.

7.1.2 Advice on general occupational hygiene

Avoid inhalation or ingestion. General occupational hygiene measures are required to ensure a safe handling of the substance. These measures involve good personal and housekeeping practices (i.e. regular cleaning with suitable cleaning devices), no drinking, eating and smoking at the workplace, unless otherwise stated below the wearing of standard working clothes and shoes. Shower and change clothes at end of work shift. Do not wear contaminated clothing at home. Do not blow dust off with compressed air.

7.2 Conditions for safe storage, including any incompatibilities

- Keep container closed when not in use.
- Store in a tightly closed container.
- Store in a cool, dry, well-ventilated area away from incompatible substances.
- Keep away from metals.
- Store protected from azides.

7.3 Specific end use(s)

Please check the identified uses in Section 16. For more information please see relevant exposure scenario (Annex to this SDS) or contact supplier.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN Revision date: June / 2023

Printing Date: June 01 2023

8 EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1 Control parameters

PNEC aqua (freshwater): 0.0574 µg Hg/L PNEC aqua (marine water): 0.0672 µg Hg /L PNEC aqua (intermittent releases): 0.776 µg Hg/L PNEC sediment (freshwater): 9.3 mg Hg/kg sediment dw PNEC sediment (marine water): 9.3 mg Hg/kg sediment dw PNEC STP: 2.25 µg Hg/L PNEC soil: 22 µg Hg/kg soil dw

DNEL urinary Hg level: 30 µg Hg/g creatine in urine

Refer to section 11 and 12 of the SDS for information on PNEC and DNEL derivation. Guidance on how to comply with these DNELs and PNECs is given in the attached Exposure Scenarios, in the annex.

8.2 Exposure controls

8.2.1 Appropriate engineering controls

- Apply technical measures to comply with the occupational exposure limits.
- Refer to protective measures listed in section "Handling and storage" and "Exposure controls / personal protection".
- Detailed information on exposure controls, e.g. engineering controls and individual protection measures is given in the attached Exposure Scenarios (Annex of this SDS).

8.2.2 Individual protection measures, such as personal protective equipment

Please refer to the annex - exposure scenarios of this SDS for detailed information.

8.2.3 Environmental exposure controls

Please refer to the annex - exposure scenarios of this SDS for detailed information.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

Printing Date: June 01 2023

9 PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

	Property	Value/ Result	Remark	
а	Appearance	silver-white liquid	at room temperature; (handbook data / database)	
b	Odour	odourless	(handbook data / database)	
С	Odour threshold	not applicable	-	
d	рН	not available	-	
е	Melting point	-38.67 °C	at 1013 hPa; the mean of 2 values was taken; (handbook data / database)	
f	Boiling point	356.66 °C	at 1013 hPa; the mean of 2 values was taken; (handbook data / database)	
g	Flash point	not applicable	inorganic substance	
h	Evaporation rate	not available	-	
i	Flammability	non-flammable	(handbook data / database)	
		no pyrophoric properties	based on chemical structure	
j	Explosive limits	non-explosive substance	void of any chemical structures commonly associated with explosive properties	
k	Vapour pressure	0.00163 hPa	at 20 °C (handbook data / database)	
I	Vapour density	6.93	rel. vapour density (handbook data / database)	
m	Relative density	13.54	at 20 °C; the mean of 2 values was taken (handbook data / database)	
n	Solubility in water	0.0567 mg/L	at 25 °C (handbook data / data base)	
0	Partition coefficient	not applicable	inorganic substance; not soluble in water	
р	Auto ignition temperature	not applicable	non-combustible liquid	
q	Decomposition temperature	not applicable	-	
r	Viscosity	1.55 mPa * s (dynamic)	at 20 °C (handbook data / data base)	
S	Explosive properties	non explosive	void of any chemical structures commonly associated with explosive properties	
t	Oxidising properties	no oxidising properties	based on the chemical structure, the substance does not contain a surplus of oxygen or any structural groups known to be correlated with a tendency to react exothermally with combustible material	

9.2 Other information

No further information.

10 STABILITY AND REACTIVITY

10.1 Reactivity

See section 10.5.

10.2 Chemical stability

- Stable under recommended storage

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN Revision date: June / 2023

Printing Date: June 01 2023

10.3 Possibility of hazardous reactions

See section 10.5.

10.4 Conditions to avoid

Avoid exposure or contact to extreme temperatures and incompatible chemicals.

10.5 Incompatible materials

Mercury is incompatible with acetylene and acetylene derivatives, amines, ammonia, 3-bromopropyne, boron diiodophosphide, methyl azide, sodium carbide, heated sulfuric acid, methylsilane /oxygen mixtu res; nitric acid /alcohol mixtures, tetracarbonylnickel/oxygen mixtures, alkyne/silver perchlorate mixtures, halogens (i.e. chlorine, bromine) and strong oxidizers (i.e. c hlorine dioxide, pe rchlorates). Mercury can attack copper and copper alloys. Additionally, mercury can react with many metals (i.e. calcium, lithium, potassium, sodium, rubidium, aluminium) to form amalgams.

10.6 Hazardous decomposition products

If this product is exposed to extremely high temperatures in the presence of oxygen or air, toxic vapours of mercury and mercury oxides will be generated.

11 TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

The information provided in this section is consistent with the information provided in the REACH chemical safety report (CSR) for mercury. For more detailed information please refer to the CSR.

(a) Acute toxicity Mercury is fatal via inhalation route of exposure).	
(a) Acute toxicity Mercury is fatal via inhalation route of exposure).	
(a) Acute toxicity Mercury is fatal via inhalation route of exposure).	
<u>Oral route:</u>		
(i) LD ₅₀ = >9.2 mg Hg/kg bw (recalculated from moderate morphological changes in kidneys, de increase in serum cholesterol and phosphorus I	ecrease of lactate dehydrogenase activity,	
Method: test material: HgCl ₂ , species: female ra	ats; gavage	
(ii) $LD_{50} = 26 \text{ mg Hg/kg bw}$ (recalculated from 3 Method: test material: HgCl ₂ ; species: rat (most		
gavage		
Both studies for acute oral toxicity testing were assessment: 35 mg/kg bw	considered for the value used in risk	
Acute inhalation toxicity:		
$LD_{50} = \langle 27 \text{ mg Hg/m}_3 \text{ (for 2 h exposure time)} \rangle$		
Method: test material: Hg vapour, species: male Classification: acute tox 2 (fatal if inhaled)	e rats; inhalation vapour, whole body	
Acute dermal toxicity:		
Only little information available.		
Effect level= 0.5 – 1 g/kg (all animals died withi morphological changes in kidneys)	n 3 to 6 days after the last treatment;	
Method: test material: mercury ointment (50 % rabbits; dermal, not covered	Hg; 50 % HgCl ₂ ointment), species:	

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

Toxicity endpoints	Outcome of the effects assessment			
(h) Okin composion (For this instation, and the form prime bond in sites studies with increasing second second			
(b) Skin corrosion / irritation	For skin irritation, no data from animal and in vitro studies with inorganic mercury are available. However, human data and one animal study were used for risk assessment:			
	Result: not irritating			
	Method: OECD 404, test substance: Ti-Hg, Cu-Sn Zr-Al alloy (containing 24.8 %			
	mercury); species rabbit; occlusive, clipped			
	nformation from accidental exposure in humans indicates a potential to cause acrodynia,			
	matitis and conjunctivitis in exposed subjects.			
	Classification: skin corr 1B for HgCl ₂ ; but metallic mercury is not classified as irritant or corrosive for the skin			
(c) Serious eye	No data from animal and in vitro studies are available. Human data were used for risk			
damage / irritation	assessment (Bluhm; et al.;1992) (Sexton; et al.; 1978)			
	Classification: metallic mercury is not classified as irritant or corrosive for the eye			
(d) Respiratory or	Skin sensitisation:			
skin sensitization	For skin sensitisation, no data from animal studies with inorganic mercury are available.			
	However, human data and one animal study were used for risk assessment:			
	Result: not sensitising Method: OECD 406, test substance: Ti-Hg, Cu-Sn Zr-Al alloy (containing 24.8 %			
	mercury); species guinea pigs; occlusive			
	Allergic contact dermatitis in humans to mercury was shown to be uncommon.			
	Classification: not warranted			
	Respiratory sensitisation:			
	No data are available and no testing is required.			
	Classification: not warranted			
(e) Germ cell	Read-across from HgCl ₂			
mutation	key studies:			
	 Method: forward mutation assay at the thymidine kinase locus (TK+/-) in L5178Y mouse lymphoma cells with HgCl₂ 			
	Results: Positive with metabolic activation (weekly mutagenic).			
	(ii) Method: Mammalian in vivo cytogenetic assays. Analysis of chromosome aberrations			
	in bone marrow cells.; test substance: HgCl ₂ ; in vivo; mouse Results: Positive.			
	The supportive studies are not listed here (refer to CSR)			
	In-vitro and in-vivo genotoxicity studies for HgCl ₂ showed equivocal results.			
	Classification: mercury is not classified for genotoxicity			
(f) Carcinogenicity	Read-across from HgCl ₂			
	Human and animal data were used for risk assessment: (i) NTP (1993): species rat; test substance: HgCl ₂ ; oral, gavage			
	Result: some evidence of a carcinogenic activity in male rats and equivocal evidence			
	of a carcinogenic activity in female rats.			
	 (ii) NTP (1993): species mice; test substance: HgCl₂; oral, gavage Result: equivocal evidence of a carcinogenic activity in male mice and no evidence of 			
	a carcinogenic activity in female mice			
	(iii) Human data (Barregård;1990 and Cragle; 1984): occupational inhalation exposure			
	Result: equivocal.			
	The evidence for a mutagenic or carcinogenic potential of Hg in both animal and			
	epidemiological studies is equivocal, and it is so far lacking in humans at low exposure concentrations < $50 \mu g/g$ creatinine in urine. The mutagenic or carcinogenic potential of			
	Hg seems to be related to metal induced oxidative stress and thus, if a potential is present			
	in humans, a threshold effects is hypothetically possible.			
	Classification: no classification for carcinogenicity			

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

reproduction Read-across from HgCl ₂ Cne supportive animal study and human data were used for risk assessment: (i) Animal data: species rat; test substance: HgCl ₂ ; oral, drinking water; effects on male ferifiliy (ii) Human data: Limited epidemiological studies in humans show that there is a transfe from mother to fetus during Hg vapour exposure. Only a few epidemiological studies have been performed and these were mostly in the field of denistry. As a whole, the limited data presently available provide no conclusive evidence for occupations exposure to mercury vapour being harmful to reproduction. There is no link to a increase in teratogenic or other adverse pregnancy outcomes. Developmential toxicity: No reliable data available. Classification criteria according to regulation (EC) 1272/2008 as specific target organ toxicals rat; lest substance: HgCl ₂ ; oral, gavage; 26 weeks Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl ₂ /kg bw/d) based on kidney weights of male rats (i) NTP (1993): species rat; test substance: HgCl ₂ ; oral, gavage; 2 weeks Result: LOAEL = 0.19 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl ₂ /kg bw/d) based on kidney weights of male rats (ii) NTP (1993): species rat; test substance: HgCl ₂ ; oral, gavage; 2 weeks Result: LOAEL = 0.19 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl ₂ /kg bw/d) based on kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats Result: LOAEL = 0.19 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl ₂ /kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestablished mercury induced nephrolic syndrome. However, absorption through the sin is very limited and thus systemic toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium choli	Toxicity endpoints	Outcome of the effects assessment				
 Read-across from HqCl; One supportiva animal study and human data were used for risk assessment: (i) Animal data: species rat; test substance: HqCl;; oral, drinking water; effects on male fertility (ii) Human data: Limited epidemiological studies in humans show that there is a transfe from mother to fetus during Hg vapour exposure. Only a few epidemiological studies have been performed and these were mostly in the field of dentistry. As a whole, the limited data presently available provide no conclusive evidence for occupation exposure to mercury vapour being harmful to reproduction. There is no link to a increase in teratogenic or other adverse pregnancy outcomes. Developmental toxicity: No reliable data available. Classification criteria according to regulation (EC) 1272/2008 as specific target organ toxicant (STOT) – single exposure, are not met. (i) STOT-repeated Repeated does toxicity, oral (ii) NTP (1993): species rat; test substance: HgCl;; oral, gavage; 26 weeks Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl;/kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as real hyperplasia and forestablished mercury induced hermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects of human literative revealed some information about clinical findings in subjected dermal aborptive available for repeated dermal avoir induced human data are available for repeated dermal exposure appaars. No TP (1993): species rat; test substance: HgCl; oral, gavage; 2 years Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl;/kg bw/d) based on effects on survival, incre						
 One supportive animal study and human data were used for risk assessment: (i) Animal data: species rat; test substance: HgCl₂; oral, dinking water; effects on male fertility (ii) Human data: Limited epidemiological studies in humans show that there is a transfe from mother to fetus during Hg vapour exposure. Only a few epidemiological studies have been performed and these were mostly in the field of dentisty. As a whole, the limited data presently available provide no conclusive evidence for occupationa exposure to mercury vapour being harmful to reproduction. There is no link to an increase in teratogenic or other adverse pregnancy outcomes. Developmental toxicity: No reliable data available. Classification tor elemental mercury: repr cat 2 (may cause harm to the unborn child) (f) STOT-single Exposure The classification or offeria according to regulation (EC) 1272/2008 as specific target organ toxicant (STOT) – single exposure, are not met. (f) NTP (1993): species rat; test substance: HgCl₂; oral, gavage; 26 weeks Repeated dose toxicity, oral (ii) NTP (1993): species rat; test substance: HgCl₂; oral, gavage; 2 years Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl₂/kg bw/d) based on kidney weights and forestomach epithelium hyperplasia in male rats Repeated dose toxicity, dermal No adequate animal literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an available for repeated deemole optical symptome. How equate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment.	(g) Toxicity for					
 (ii) Human data: Limited epidemiological studies in humans show that there is a transfer from mother to fetus during Hg vapour exposure. Only a few epidemiological studie have been performed and these were mostly in the lield of dentistry. As a whole, the limited data presently available provide no conclusive evidence for occupational exposure to mercury vapour being harmful to reproduction. There is no link to a increase in teratogenic or other adverse pregnancy outcomes. <u>Developmental toxicity:</u> No reliable data available. Classification for elemental mercury: repr cat 2 (may cause harm to the unborn child) (ft) STOT-repated Read-across from HgCL: Repated fose toxicity, oral (i) NTP (1993): species rat; test substance: HgCl₂; oral, gavage; 26 weeks Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl₂/kg bw/d) based on kidney weights of male rats (ii) NTP (1993): species rat; test substance: HgCl₂; oral, gavage; 2 years Result: LOAEL = 1.9 mg Hg/Rg Dw/d (recalculated from 0.312 mg HgCl₂/kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats Repeated dose toxicly, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about chilcid Indings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an unrary mercury concentration of 29 µg/ (range 0.90 µg/) must be regarded ase a LOAEL based on established mercury induced nephrotize. It could be concluded that an unrary mercury concentration of 29 µg/ (range 0.90 µg/) must be regarded ase a LOAEL based on setablished mercury induced nephrotize. It could be conc		One supportive animal study and human data were used for risk assessment: (i) Animal data: species rat; test substance: HgCl ₂ ; oral, drinking water; effects on male				
No reliable data available. Classification for elemental mercury: repr cat 2 (may cause harm to the unborn child) (h) STOT-single exposure The classification criteria according to regulation (EC) 1272/2008 as specific target organ toxicant (STOT) – single exposure, are not met. (i) STOT-repeated exposure Read-across from HgCl: Repeated dose toxicity, oral Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl2/kg bw/d) based on kidney weights of male rats (ii) NTP (1993): species rat; test substance: HgCl2; oral, gavage; 26 weeks Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl2/kg bw/d) based on kidney weights of male rats Repeated dose toxicity, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric annorium chloride. It could be concluded that an uninary mercury concentration of 29 µg/l (range 0.90 µg/l) must be regarded as a LOAEL based on established mercury induced neptrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dose toxicity, innalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChl0 (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the revise of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the a		(ii) Human data: Limited epidemiological studies in humans show that there is a transfer from mother to fetus during Hg vapour exposure. Only a few epidemiological studies have been performed and these were mostly in the field of dentistry. As a whole, the limited data presently available provide no conclusive evidence for occupation exposure to mercury vapour being harmful to reproduction. There is no link to a				
Classification for elemental mercury: repr cat 2 (may cause harm to the unborn child) (h) STOT-single exposure The classification criteria according to regulation (EC) 1272/2008 as specific target organ toxicant (STOT) – single exposure, are not met. (i) STOT-repeated exposure Read-across from HgCl; Repeated dose toxicity, oral (i) NTP (1993): species rat; test substance: HgCl;; oral, gavage; 26 weeks Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl;/kg bw/d) based on kidney weights of male rats (ii) NTP (1993): species rat; test substance: HgCl; oral, gavage; 2 years Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl;/kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats Repeated dose toxicity, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/ (range 0 -90 µg/) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dormal exposure appears to be not of major concern. Repeated cose toxicity, inhalat		Developmental toxicity:				
(h) STOT-single The classification criteria according to regulation (EC) 1272/2008 as specific target organ toxicant (STOT) – single exposure, are not met. (i) STOT-repeated Read-across from HgCl ₂ Repeated dose toxicity, oral Repeated dose toxicity, oral (ii) NTP (1993): species rat; test substance: HgCl ₂ ; oral, gavage; 26 weeks Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl ₂ /kg bw/d) based on kidney weights of male rats (iii) NTP (1993): species rat; test substance: HgCl ₂ ; oral, gavage; 2 years Result: LOAEL = 1.9.19 Hg/kg bw/d (recalculated from 2.5 mg HgCl ₂ /kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats Repeated dose toxicity, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 = 90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dormal exposure appears to be not of major concern. Repeated dose toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to mode						
exposure target organ toxicant (STOT) – single exposure, are not met. (i) STOT-repeated Read-across from HgCl; Repeated dose toxicity, oral (ii) NTP (1993): species rat; test substance: HgCl;; oral, gavage; 26 weeks Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg Hg/Lg/kg bw/d) based on kidney weights of male rats (ii) NTP (1993): species rat; test substance: HgCl; oral, gavage; 2 years Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 0.312 mg Hg/Lg/kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats Repeated dose toxicity, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dermal exposure appears to be not of major concern. Repeated dose toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-	(h) STOT-single					
Repeated dose toxicity, oral (i) NTP (1993): species rat; test substance: HgCl ₂ ; oral, gavage; 26 weeks Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl ₂ /kg bw/d) based on kidney weights of male rats (ii) NTP (1993): species rat; test substance: HgCl ₂ ; oral, gavage; 2 years Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl ₂ /kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats Repeated dose toxicity, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. EValuation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated does toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. Repeated does toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review o	exposure					
 (i) NTP (1993): species rat; test substance: HgCl₂; oral, gavage; 26 weeks Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl₂/kg bw/d) based on kidney weights of male rats (ii) NTP (1993): species rat; test substance: HgCl₂; oral, gavage; 2 years Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl₂/kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats <u>Repeated dose toxicity, dermal</u> No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated domal exposure appears to be not of major concern. <u>Repeated dose toxicity, inhalation</u> No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review oscientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatin	(i) STOT-repeated					
Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl ₂ /kg bw/d) based on kidney weights of male rats (ii) NTP (1993): species rat; test substance: HgCl ₂ ; oral, gavage; 2 years Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl ₂ /kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats Repeated dose toxicity, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/ (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated doremal exposure appears to be not of major concern. Repeated dose toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of uriary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al.	exposure					
 (ii) NTP (1993): spècies Tat; test substance: HgCl₂; oral, gavage; 2 years Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl₂/kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats <u>Repeated dose toxicity, dermal</u> No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dose toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatinine. Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat)		Result: LOAEL = 0.23 mg Hg/kg bw/d (recalculated from 0.312 mg HgCl ₂ /kg bw/d)				
Result: LOAEL = 1.9 mg Hg/kg bw/d (recalculated from 2.5 mg HgCl ₂ /kg bw/d) based on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats Repeated dose toxicity, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dermal exposure appears to be not of major concern. Repeated for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatinine. Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidn						
 on effects on survival, increased kidney weights and severity of nephropathy as well as renal hyperplasia and forestomach epithelium hyperplasia in male rats <u>Repeated dose toxicity, dermal</u> No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dose toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatinine. Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidneys Classification: STOT rep exp 1 (causes damage to organs through prolonged exposure) (j) Aspiration hazard Ko						
Repeated dose toxicity, dermal No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment.Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated demal exposure appears to be not of major concern. Repeated does toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatinine.Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidneysClassification: STOT rep exp 1 (causes damage to organs through prolonged exposure)(j) Aspiration hazard		on effects on survival, increased kidney weights and severity of nephropathy as well				
No adequate animal data are available for repeated dermal toxicity. Human data were used for risk assessment.Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dermal exposure appears to be not of major concern. Repeated dose toxicity, inhalation No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment.The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatinine.Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidneysClassification: STOT rep exp 1 (causes damage to organs through prolonged exposure)(j) Aspiration hazard						
 used for risk assessment. Evaluation of human literature revealed some information about clinical findings in subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dermal exposure appears to be not of major concern. <u>Repeated dose toxicity, inhalation</u> No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatinine. Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidneys Classification: STOT rep exp 1 (causes damage to organs through prolonged exposure) (j) Aspiration 						
subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of 29 µg/l (range 0 -90 µg/l) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dermal exposure appears to be not of major concern. <u>Repeated dose toxicity, inhalation</u> No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatinine. Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidneys Classification: STOT rep exp 1 (causes damage to organs through prolonged exposure) No hazard expected.		used for risk assessment.				
No adequate animal data are available for repeated inhalation toxicity. Human data were used for risk assessment. The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 µg Hg/g creatinine.Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidneysClassification: STOT rep exp 1 (causes damage to organs through prolonged exposure)No hazard expected.		subjects using skin lightening creams containing mercuric ammonium chloride. It could be concluded that an urinary mercury concentration of $29 \ \mu g/l$ (range 0 -90 $\mu g/l$) must be regarded as a LOAEL based on established mercury induced nephrotic syndrome. However, absorption through the skin is very limited and thus systemic toxicity following repeated dermal exposure appears to be not of major concern.				
The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level) of 30 μg Hg/g creatinine.Key value for CSA: LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidneysClassification: STOT rep exp 1 (causes damage to organs through prolonged exposure)No hazard expected.		No adequate animal data are available for repeated inhalation toxicity. Human data were				
LOAEL: 0.312 mg/kg bw/day (subchronic; rat) Target organs: urogenital: kidneys Classification: STOT rep exp 1 (causes damage to organs through prolonged exposure) (j) Aspiration hazard		The biological effects of long-time low to moderate exposures to metallic mercury vapours under occupational settings were evaluated in depth by EuroChlor (2009): It was concluded that with the exception of urinary excretion of N-acetyl-beta-D-glucosamidase (NAG) from the proximal tubular kidney cells it seems from the review of scientific literature that effects on the central nervous system are the most sensitive indicator of Hg toxicity. The conclusion of the author of this review, putting a particular emphasis on the latest Ellingsen; et al. studies encompassing the magnitude of reversibility after cessation or reduction of exposure, there are reasons to support a NOAEL (no adverse effect level)				
(j) Aspiration No hazard expected. hazard		LOAEL: 0.312 mg/kg bw/day (subchronic; rat)				
hazard		Classification: STOT rep exp 1 (causes damage to organs through prolonged exposure)				
	(j) Aspiration hazard	No hazard expected.				
Further remarks	Further remarks					

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

Printing Date: June 01 2023

Toxicity endpoints	Outcome of the effects assessment
Summary CMR	Mercury does not fulfil the criteria for CMR (carcinogen, mutagen, toxic to reproduction)
effects	Cat. 1 and Cat. 2 according to Regulation (EC) No 1272/2008.

12 ECOLOGICAL INFORMATION

12.1 Toxicity

For assessing the aquatic toxicity of elemental mercury the use of toxicity tests of mercury salts (e. g. Mercury dichloride CAS: 7487 -94 -7) is appropriate. Mercury will perform its effect eventually as free Hg metal ion, therefore all tests performed with soluble mercury salts are relevant.

Acute aquatic toxicity test results:

Test Organisms	Endpoint	Value	Reference
Freshwater fish: Poecilia reticulata	LC50 (96h)	26 µg/L (element (nominal))	Khangarot, B.S. and P.K. Ray (1987a)
Marine fish: Fundulus heteroclitus	LC50 (96h)	67 μg/L (element (meas.))	Sharp J.R. and J.M. Neff (1980)
Freshwater invertebrates: Daphnia magna	EC50 (48h) mobility	1.5 μg/L (element (nominal))	Guilhermino, L., T.C. Diamantino, R. Ribeiro, F. Goncalves, and A (1997)
Marine invertebrates: Callinectes sapidus	EC50 (48h) hatching	0.3 μg/L (element (nominal))	Lee, R.F., S.A. Steinert, K. Nakayama, and Y. Oshima (1999)
Algae: Selenastrum capricornutum	EC50 (96h) growth rate	9 μg/L (element (nominal)	Chen, C.Y., Lin, K.C., Yang, D.T. (1997)

Reliable chronic toxicity test results:

Overview of most sensitive species-specific NOEC-values for mercury in the freshwater environment

Species	Trophic level	NOEC-value	Reference studies
		(µg Hg/L)	
Pimephales promelas	Fish	0.5	Snarski and Olson, 1982
Hyalella azteca	Crustacean	0.62	Borgmann et al, 1993
Brachydanio rerio	Fish	1	Dave and Xiu, 1992
Daphnia magna	Crustacean	1.7	Biesinger and Christensen, 1972
Villosa iris	Mollusc	4	Valenti et al, 2005
Ceriodaphnia dubia	Crustacean	8.5	Spehar and Fiandt, 1986
Daphnia similis	Crustacean	10	Soundrapandian and Venkataraman, 1990
Cyclops species	Crustacean	18	Borgmann, 1980
Viviparius bengalensis	Mollusc	20	Muley and Mane, 1988
Scenedesmus acutus	Alga	20	Huismans et al, 1980
Chara vulgaris	Aquatic plant	20	Heumann, 1987
Caenorhabditis elegans	Worm	200	Donkin et al, 1995
Anacystis nidulans	Alga	250	Lee et al, 1992
Aedes aegypti	Insect	500	Rayms-Keller et al, 1998

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

Printing Date: June 01 2023

Overview of most sensitive species-specific NOEC-values for mercury in the saltwater environment

Species	Trophic level	NOEC-value	Reference studies
		(µg Hg/L)	
Crepidula fornicata	Mollusc	0.25	Thain, 1984
Mysidopsis bahia	Crustacean	0.8	Gentile et al, 1982
Fucus serratus	Higher plant	0.9	Strömgren, 1980
Skeletonema costatum	Diatom	1	Rice et al, 1973
Laminaria saccharina	Higher plant	1	Thompson and Burrows, 1984
Artemia franciscana	Crustacean	2	Go et al, 1980
Callinectes sapidus	Crustacean	4.9	McKenney and Costlow, 1982
Pelvetia canaliculata	Higher plant	5	Strömgren, 1980
Penaeus indicus	Crustacean	6	McClurgh, 1984
Ascophyllum nodosum	Higher plant	9	Strömgren, 1980
Fucus spiralis	Higher plant	9	Strömgren, 1980
Fucus vesiculosus	Higher plant	9	Strömgren, 1980
Brachionus plicatilis	Rotifera	10	Juchelka and Snell, 1995
Fundulus heteroclitus	Fish	10	Sharp and Neff, 1980
Gracilaria tenuistipitata	Higher plant	60	Haglund et al, 1996
Dunaliella tertiolecta	Alga	330	Portman, 1972
Enhalus acoroides	Higher plant	16,020	Bonifacio and Montano, 1998

Overview of long-term effects on sediment organisms

Species	Endpoint	Value	Reference
Chironomus riparius	NOEC (28 d): based	930 mg/kg sediment dw	Thompson TS, Williams
	on: development rate	element (meas.)	NJ and Eales GJ (1998)

Overview of most sensitive species-specific NOEC-values for mercury in the soil environment

Species	Trophic level	NOEC-value	Reference studies
		(mg Hg/kg dry wt.)	
Microorganisms	Microorganisms	1.4	Zelles et al, 1985
Eisenia foetida	Worm	3.7	Beyer et al, 1985
Microorganisms	Microorganisms	6	Van Faassen, 1973
Microorganisms	Microorganisms	9	Landa and Fang, 1978
Microorganisms	Microorganisms	10	Van Faassen, 1973
Microorganisms	Microorganisms	12	Spalding, 1979
Microorganisms	Microorganisms	31	Pancholy et al, 1975
Microorganisms	Microorganisms	35	Landa and Fang, 1978
Microorganisms	Microorganisms	40	Landa and Fang, 1978
Microorganisms	Microorganisms	79	Tu, 1988
Microorganisms	Microorganisms	99	Landa and Fang, 1978
Microorganisms	Microorganisms	124	Landa and Fang, 1978
Microorganisms	Microorganisms	208	Landa and Fang, 1978
Microorganisms	Microorganisms	248	Landa and Fang, 1978
Microorganisms	Microorganisms	456	Juma and Tabatabai, 1977
Microorganisms	Microorganisms	2406	Tyler, 1981

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

Printing Date: June 01 2023

Toxicity data for micro-organisms (for STP):

Test Organisms	Endpoint	Value	Reference
	18h- EC10 (growth	2.25 µg Hg/L ⁽¹⁾	Liebert; et al. (1991)
non-adapted bacteria	inhibition)		

⁽¹⁾ Mercury dichloride as test substance

Resulting PNECs

PNEC aqua (freshwater): 0.0574 µg Hg/L

PNEC aqua (marine water): 0.0672 µg Hg /L

PNEC aqua (intermittent releases): no data: aquatic toxicity unlikely

PNEC sediment (freshwater): 9.3 mg Hg/kg sediment dw

PNEC sediment (marine water): 9.3 mg Hg/kg sediment dw

PNEC STP: 2.25 µg Hg/L

PNEC soil: 22 µg Hg/kg soil dw

Conclusions on classification:

Commission Directive 98/98/EC of December 1998 (which adapted Council Directive 67/548/EEC on the classification, packaging and labelling of dangerous substances to technical progress for the 25th time) introduced environmental classification and labelling for mercury as shown below.

- CLP: Aquatic Chronic 1 (Hazard statement: H410: Very toxic to aquatic life with long lasting effects). Aquatic Acute Category 1 (H400: Very toxic to aquatic life)

- Directive 98/98/EEC: N; R50/53 Dangerous for the environment; Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

12.2 Persistence and degradability

12.2.1Abiotic Degradation

Elemental mercury does not degrade.

12.2.2Biodegradation:

The substance will not be biodegradable, as it is an inorganic substance.

12.3 Bioaccumulative potential

The bioaccumulation of inorganic mercury in biota is generally regarded to be of low relevance compared to that of organic forms of mercury and particularly methyl mercury (SCHER, 2007).

Most of the mercury accumulated/transferred in higher trophic levels in the food chain are found in an organic form 70-99 %), mainly methyl mercury. This is because inorganic mercury is assimilated less efficiently than methyl mercury from the ambient medium and from dietary sources and is eliminated more efficiently than methyl mercury.

12.3.1 Secondary poisoning

Predators such as mammals and birds that feed on prey (fish, mussels,...) may contain mercury of which most is organic mercury (see discussion above about bioaccumulative potential). Therefore, in line with the recommendation of the Scientific Committee on Toxicity, Ecotoxicity and the Environment (SCTEE), secondary poisoning of top predators in the food chain is only relevant for methyl mercury (SCTEE, 2004 ""**WFD**"; EC, 2005).

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN Revision date: June / 2023

Printing Date: June 01 2023

12.4 Mobility in soil

The studies reported refer to ionic divalent Hg species and not elemental Hg.

Distribution coefficients were taken from the voluntary risk assessment report Eurochlor, 1999 and a more recent study of EPA, 2005.

- log K_D (solids-water in suspended matter): 170,000 L/kg
- log K_D (solids-water in soil): 6309.57 L/kg
- log K_D (solids-water in sediment): 170,000 L/kg

12.5 Results of PBT and vPvB assessment

Not relevant for inorganic substances.

12.6 Other adverse effects

<u>Volatisation:</u> Due to a low water solubility and high vapour pressure, elemental mercury exhibits a very high volatilization potential. The vapour pressure of mercury metal is strongly dependent upon temperature, and it vaporizes readily under ambient conditions. Its saturation vapour pressure of 14 mg/m³ greatly exceeds the average permissible concentrations for occupational (0.05 mg/m³) or continuous environmental exposure (0.015 mg/m³) (WHO, 1976). Elemental mercury partitions strongly to air in the environment and is not found in nature as a pure, confined liquid. Most of the mercury encountered in the atmosphere is elemental mercury vapour.

13 DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

- In accordance with local and national regulations.

- If mercury must be disposed of as hazardous waste, it must be handled at a permitted facility or as advised by your local hazardous waste regulatory authority.

Suitable risk management measures have to be applied to avoid that mercury is released to the environment (for details on treatment see Annex of this SDS)

14 TRANSPORT INFORMATION

Mercury is classified as hazardous for transport according to Land transport ADR/RID and GGVS/GGVE; Maritime transport IMDG/GGVSea; Air transport ICAO-TI and IATA-DGR:

14.1 UN-Number

UN 2809

14.2 UN proper shipping name

Mercury

14.3 Transport hazard class(es)

8

8 (C9) Corrosive substances [ADR/RID and GGVS/GGVE]

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN Revision date: June / 2023

Printing Date: June 01 2023

14.4 Packing group

PG III

14.5 Environmental hazards

Environmental hazardous substance, liquid; Marine pollutant Symbol (fish and tree)

14.6 Special precautions for user

Refer to section 4 to 8

14.7 Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code

No information.

14.8 Additional information

ADR/RID and GGVS/GGVE: Limited quantities: LQ19 Transport category: 3 Tunnel restriction code: E

IMDG/GGVSea:

Segregation groups: Heavy metals and their salts (including their organometallic compounds), mercury and mercury coumpounds

15 REGULATORY INFORMATION

15.1 Safety, health and environmental regulations/legislation specific for the substance

Mercury is listed in the following chemical inventory: Klassifizierung Gefahrstoffverordnung Classification according to the Administrative Regulation of Substances Hazardous to Water (VwVwS): Water endangering class 3 - hazard to waters (Germany, Substance-No. 393)

Refer to section 16.2 and section 16.3.

15.2 Chemical safety assessment

A chemical safety assessment has been carried out for this substance. T+ Gefahrstoffrecht R Sätze F

16 OTHER INFORMATION

16.1 General

Data are based on our latest knowledge but do not constitute a guarantee for any specific product features and do not establish a legally valid contractual relationship.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Mercury Version 1.0/EN

Revision date: June / 2023

Printing Date: June 01 2023

16.2 Risk Phrases

R26 – very toxic by inhalation

R61 - may cause harm to the unborn child

R48/23 - toxic: danger of serious damage to health by prolonged exposure through inhalation R50/53 - very toxic to aquatic organisms, may cause long-term effects in the aquatic environment

16.3 Safety Phrases

S45 – in case of accident or if you feel unwell, seek medical help advice immediately (show label where possible)

S53 - avoid exposure - obtain special instructions before use

- S60 this material and its container must be disposed of as hazardous waste
- S61 avoid release to the environment. refer to special instructions/safety data sheets

16.4 Abbreviations

(NOT ALL ARE USED IN THIS SDS)

AC	Article category
ADR	European agreement concerning the international carriage of dangerous goods by road
AND	European agreement concerning the international carriage of dangerous goods by inland waterways
BSAF	Bio soil accumulation factor
BCF	Bio concentration factor
CAS	Chemical Abstracts Service
CLP	Classification, labelling and packaging
CMR	Carcinogenic, mutagenic or toxic for reproduction
CSA/CSR	Chemical safety assessment / Chemical safety report
D ₅₀	Median particle size
DNEL	Derived no effect level
DSD	Dangerous Substance Directive
EC ₁₀	Concentration of a substance where 10% of the population is affected
EC ₅₀	Concentration of a substance where 50% of the population is affected
ECHA	European chemicals agency
EINECS	EU list of existing chemical substances
EmS	Emergency schedule
ERC	Environmental release category
ES	Exposure scenario
eSDS	Extended safety data sheet
FOREGS	Forum of European Geological Surveys
GHS	Globally harmonised system
HERAG	Health risk assessment guidance for metals
IATA-DGR	International air transport association - dangerous goods regulations
ICAO	Technical Instructions for the Safe Transport of Dangerous Goods by Air
IU	Identified use
IUPAC	International Union of Pure and Applied Chemistry
IBC code	International code for the construction and equipment of ships carrying dangerous chemicals in bulk
IMDG	International maritime dangerous goods
KP	Partition coefficient
LC ₁₀	Lethal concentration of a substance that can be expected to cause death in 10% of the population

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 453/2023

Version: SDS Me	cury Version 1.0/EN
Revision date: Ju	ne / 2023 Printing Date: June 01 2023
LC ₅₀	Lethal concentration of a substance that can be expected to cause death in 50% of
	the population
LD ₅₀	Lethal dose of a substance that can be expected to cause death in 50% of the
	population
MARPOL 73/7	8 International convention for the prevention of pollution from ships, 1973 as modified by the protocol of 1978
MMAD	Mass median aerodynamic diameter
NO(A)EC	No observed (adverse) effect concentration
NO(A)EL	No observed (adverse) effect level
OECD	Organisation for economic co-operation and development
OEL	Occupational exposure limit
PBT	Persistent, bioaccumulative, and toxic
PC	Product category
PNEC	Predicted no-effect concentration
PROC	Process category
REACH	Registration, evaluation, authorisation and restriction of chemicals (i.e. Regulation (EC) No. 1907/2006)
RID	International rule for transport of dangerous substances by railway
SDS	Safety data sheet
STOT	Specific target organ toxicant
STP	Sewage treatment plant
SU	Sector of end use
TWA	Time weighted average
vPvB	Very persistent, very bioaccumulative

16.5 Key literature references

The information provided in this eSDS is consistent with the information provided in the REACH chemical safety report (CSR) for mercury. The CSR contains a complete reference list for all data used. Non-confidential data from the REACH registration dossier are published by the European Chemicals Agency ECHA, see http://apps.echa.europa.eu/registered/sub.aspx

16.6 Revision

This is the first version of the eSDS of mercury. Hence, no revision information should be mentioned here.

Version 2010-12-01: New extended Safety Data Sheet in compliance with Regulation (EC) No. 1907/2006 ("REACH") and Regulation EC No. 453/2010 (Annex II). All chapters of this safety data sheet have been revised according to the results of the data evaluation for the REACH registration dossier and CSR, based on Regulation (EC) No. 1272/2008 and Regulation (EC) No. 1907/2006. The information provided in this SDS is consistent with the information provided in the REACH chemical safety report (CSR) for mercury.

<u>Disclaimer</u>

Roteschemie provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. Furthermore, this safety data sheet is made up based on the legal requirements as set by EC 1907/2006 (REACH) based on information as is available per November 2022.

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006,

Regulation (EC) 1272/2008 and Regulation (EC) 453/2022

Version: SDS Mercury Draft Version 1.0/EN Revision date: June / 2023

Printing Date: June 01 2023

16.7 Identified uses:

To demonstrate the safe use of mercury, occupational exposure scenarios (see Annex) have been developed. Each scenario covers the processes related to the production and to respective identified uses of mercury and includes an assessment and risk characterisation of occupational and environmental exposure.

IU number	Exposure scenario	Identified Use	Use descriptors
	number as referenced	(IU) name	
	in the CSR		
1	9.1	Waste recovery	Process category (PROC):
			PROC 1: Use in closed process, no likelihood of exposure
			PROC 3: Use in closed batch process (synthesis or formulation)
			PROC 5: Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)
			PROC 8a: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities
			PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities
			PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)
			PROC 21: Low energy manipulation of substances bound in materials and/or articles
			PROC 22: Potentially closed processing operations with minerals/metals at elevated temperature. Industrial setting
			Market sector by type of chemical product:
			PC 7: Base metals and alloys
			PC 0: Other: recycling
			Environmental release category (ERC):
			ERC 1: Manufacture of substances
			ERC 3: Formulation in materials
			ERC 6a: Industrial use resulting in manufacture of another substance (use of intermediates)
			Sector of end use (SU):
			SU 0: Other: industrial use
			SU 2b: Offshore industries

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006,

Regulation (EC) 1272/2008 and Regulation (EC) 453/2022

Version: SDS Mercury Draft Version 1.0/EN

Revision date: June / 2023

		CUL44 Manufacture of hosis module, inclusion allows
		SU 14: Manufacture of basic metals, including alloys
		Subsequent service life relevant for that use?: yes
		Article category related to subsequent service life (AC):
		AC 3: Electrical batteries and accumulators
		AC 0: Other: relays, switches, thermometers/barometers, dental amalgam, chlor alkali, gold production
9.2	Production of	Process category (PROC):
	phenyl mercury	PROC 1: Use in closed process, no likelihood of exposure
	carboxylates	PROC 2: Use in closed, continuous process with occasional controlled exposure
		PROC 3: Use in closed batch process (synthesis or formulation)
		PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities
		Market sector by type of chemical product:
		PC 21: Laboratory chemicals
		PC 0: Other: catalysator
		Environmental release category (ERC):
		ERC 1: Manufacture of substances
		Sector of end use (SU):
		SU 0: Other: industrial and laboratory use
		Subsequent service life relevant for that use?: yes
		Article category related to subsequent service life (AC):
		AC 0: Other: poly-urethane
9.3	Chlor-alkali	Process category (PROC):
	electrolysis	PROC 1: Use in closed process, no likelihood of exposure
		PROC 2: Use in closed, continuous process with occasional controlled exposure
		PROC 3: Use in closed batch process (synthesis or formulation)
		PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities
		PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)
		Market sector by type of chemical product:
		9.3 Chlor-alkali

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006,

Regulation (EC) 1272/2008 and Regulation (EC) 453/2022

Version: SDS Mercury Draft Version 1.0/EN

Revision date: June / 2023

			PC 0: Other: not relevant
			Environmental release category (ERC):
			ERC 1: Manufacture of substances
			Sector of end use (SU):
			SU 17: General manufacturing, e.g. machinery, equipment, vehicles, other transport equipment
			SU 20: Health services
			Subsequent service life relevant for that use?: yes
			Article category related to subsequent service life (AC):
			AC 0: Other: not relevant
4	9.4	Production of	Process category (PROC):
		mercury	PROC 2: Use in closed, continuous process with occasional controlled exposure
		dispensers for	PROC 4: Use in batch and other process (synthesis) where opportunity for exposure arises
		discharge lamps	PROC 8a: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities
			PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities
			PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)
			PROC 14: Production of preparations or articles by tabletting, compression, extrusion, pelletisation
			PROC 21: Low energy manipulation of substances bound in materials and/or articles
			PROC 22: Potentially closed processing operations with minerals/metals at elevated temperature. Industrial setting
			PROC 24: High (mechanical) energy work-up of substances bound in materials and/or articles
			Market sector by type of chemical product:
			PC 7: Base metals and alloys
			Environmental release category (ERC):
			ERC 3: Formulation in materials
			Sector of end use (SU):
			SU 15: Manufacture of fabricated metal products, except machinery and equipment
			Subsequent service life relevant for that use?: yes
			Article category related to subsequent service life (AC):
			AC 2: Machinery, mechanical appliances, electrical/electronic articles

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006,

Regulation (EC) 1272/2008 and Regulation (EC) 453/2022

Version: SDS Mercury Draft Version 1.0/EN

Revision date: June / 2023

5	9.5	Production of gas	Process category (PROC):
		discharge lamps	PROC 2: Use in closed, continuous process with occasional controlled exposure
			PROC 4: Use in batch and other process (synthesis) where opportunity for exposure arises
			PROC 8a: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities
			PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities
			PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)
			PROC 14: Production of preparations or articles by tabletting, compression, extrusion, pelletisation
			PROC 21: Low energy manipulation of substances bound in materials and/or articles
			PROC 22: Potentially closed processing operations with minerals/metals at elevated temperature. Industrial setting
			PROC 24: High (mechanical) energy work-up of substances bound in materials and/or articles
			Market sector by type of chemical product:
			PC 7: Base metals and alloys
			Environmental release category (ERC):
			ERC 3: Formulation in materials
			Sector of end use (SU):
			SU 16: Manufacture of computer, electronic and optical products, electrical equipment
			Subsequent service life relevant for that use?: yes
			Article category related to subsequent service life (AC):
			AC 2: Machinery, mechanical appliances, electrical/electronic articles
6	9.6	Production of	Process category (PROC):
		dental amalgam	PROC 3: Use in closed batch process (synthesis or formulation)
			PROC 4: Use in batch and other process (synthesis) where opportunity for exposure arises
			PROC 5: Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)
			PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities
			PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)
			PROC 21: Low energy manipulation of substances bound in materials and/or articles
			Market sector by type of chemical product:
			PC 0: Other: D25100 Dental alloys

prepared in accordance with Annex II of the REACH Regulation EC 1907/2006,

Regulation (EC) 1272/2008 and Regulation (EC) 453/2022

Version: SDS Mercury Draft Version 1.0/EN

Revision date: June / 2023

Environmental release category (ERC):
ERC 3: Formulation in materials
Sector of end use (SU):
SU 20: Health services
SU 0: Other: NACE C20.5.9 Manufacture of other chemical products n.e.c.
Subsequent service life relevant for that use?: yes
Article category related to subsequent service life (AC):
AC 0: Other: TARIC 2805.40.90 mercury for use in dental amalgam

IU number	Use advised against name	Use descriptors		
9	Production of thermometers and	Process category (PROC):		
	measuring devices intended for sale	PROC 0: Other: Measuring devices		
	to the general public	Market sector by type of chemical product:		
		PC 0: Other: Measuring devices		
		Environmental release category (ERC):		
		ERC 5: Industrial use resulting in inclusion into or onto a matrix		
		Sector of end use (SU):		
		SU 0: Other: Measuring equipment		
		Article category related to subsequent service life (AC):		
		AC 01: Other (non intented to be released): measuring devices		

ANNEX EXPOSURE SCENARIOS "MERCURY"

IU 1 Waste recovery

Exposure	e Scenario Fo	ormat (1)	addressing uses carried ou	ıt by worker	S		
1.1 Title							
Free short title Recycling of mercury metal							
Systematic title based on use descriptor		AC 3, A	PC7, PC 0 (Recycling) SU 2b, SU3 (Industrial uses), SU 14 AC 3, AC 0 (relays, switches, thermometers/barometers, dental amalgam, chlor alkali, gold production) (Appropriate PROCs and ERCs are given in Section 2 below)				
Processes, t activities co	tasks and/or overed	Processes,	tasks and/or activities covered are d	0	,		
1.2 Contr	ributing scen	ario (1) c	ontrolling environmental e	exposure			
Brief descrip	ption of overall o	perational c	onditions referring to process categ	ories (PROC) ar	nd environmental release	e categories (ERC)	
ERC number	Name		Description	Level of containment	Dispersion of emission sources	Indoor/outdoor	
ERC 1	Manufacture of chemicals	using co	cture of inorganic substances ontinuous or batch processes g dedicated or multipurpose ent	Open/closed	Industrial	Indoor	
ERC 3	Formulation in materials	Mixing or blending of substances, which will be physically or chemically bound into or onto a matrix		Open/closed	Industrial	Indoor	
ERC 6a	Industrial use resulting in manufacture of another substance (use of intermediates)	chemica processa dedicate either te by manu (manufa instance blocks (ntermediates in primarily the l industry using continuous es or batch processes applying d or multi-purpose equipment, chnically controlled or operated nal interventions, for the synthesis icture) of other substances. For the use of chemical building feedstock) in the synthesis of micals, pharmaceuticals, ers etc.	Open/closed	Industrial	Indoor	
	sites using the su according to An		entially required to demonstrate str EACH)	ictly controlled of	conditions of use to justi	fy waiving of	
Workplace			Involved tasks		Involved PROCs		
Raw material handling		delivery, visual content check, emptying of drums, sorting, crushing		5, 8b, 21			
Furnace treatment & distillation (under-pressure or hermetically closed furnaces)			evaporation, condensation, distillation, purification, including pre-treatment in closed systems		1, 3, 22		
Filling			filling of flask or large containers		8b, 9		
Logistics			internal logistics, administration,	laboratory	8b, 9		
Cleaning a	nd maintenance		cleaning, maintenance		8a		

1.3. Contributing exposure scenario controlling exposure for mercury recovery from waste

1.3.1. Control of workers exposure

Product characteristic

According to the MEASE approach, the substance-intrinsic emission potential is one of the main exposure determinants. This is reflected by an assignment of a so-called fugacity class in the MEASE tool. For operations conducted with solid substances at ambient temperature the fugacity is based on the dustiness of that substance. Whereas in hot metal operations, fugacity is temperature based, taking into account the process temperature and the melting point of the substance. As a third group, high abrasive tasks are based on the level of abrasion instead of the substance intrinsic emission potential. The spraying of aqueous solutions is assumed to be involved with a medium emission.

Workplace	Use in preparation	Content in preparation	Physical form	Emission potential
Raw material handling	not restricted		various (massive, solid, sludge, liquid)	very low – medium (depending on input of kinetic energy during crushing operations)
Furnace treatment & distillation (under-pressure or hermetically closed furnaces)			various (solid, liquid, gas)	very low – high
Filling			liquid	low
Logistics			liquid	low
Cleaning and maintenance			liquid	low

Amounts used

The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROCs and technical conditions) is the main determinant of the process-intrinsic emission potential.

Frequency and duration of use/exposure

Workplace	Duration of exposure
Raw material handling	
Furnace treatment & distillation (under-pressure or hermetically closed furnaces)	
Filling	not restricted
Logistics	
Cleaning and maintenance	

Human factors not influenced by risk management

The shift breathing volume during all process steps is assumed to be 10 m3/ shift (8 hours).

Refer to occupational hygiene measures as described below (under "Organisational measures") which influence the variation in urinary mercury levels.

Other given operational conditions affecting workers exposure						
Workplace	Room volume	Indoor or outdoor use	Process temperature	Process pressure		
Raw material handling	>1,000m ³	indoors	ambient	not restricted		
Furnace treatment & distillation (under-pressure or hermetically closed furnaces)	>1,000m ³	indoors	up to 800°C	under pressure		
Filling	not restricted	indoors	ambient	not restricted		
Logistics	not restricted	indoors	ambient	not restricted		
Cleaning and maintenance	not restricted	indoors	ambient	not restricted		

Technical conditions and measures to control dispersion from source towards the worker

Engineering and ventilation controls: basic aspects of equipment and facility design should be such that mercury emissions that may contribute to occupational exposures are minimised. Such measures may include enclosure of process equipment such that sources of dust or aerosol emissions are minimised, negative draft exhaust systems to reduce emissions from enclosures and/or local exhaust ventilation installed at unavoidable sources of process emissions. The design characteristics of any local exhaust ventilation (e.g. exhaust hoods) will be specific to the emission source being controlled. Area ventilation should also be balanced such that air flow within a work area moves from areas of low to high exposure potential. Air captured by ventilation controls may require treatment to minimise toxic substances prior to discharge or recirculation. Details on technical measures to control exposure are given below on a workplace basis.

Workplace	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information	
Raw material handling	Any potentially required separation of workers	local exhaust ventilation	78 %	-	
Furnace treatment & distillation (under-pressure or hermetically closed furnaces)	from the emission source is indicated above under "Frequency and duration of exposure". A reduction of exposure duration can be achieved, for example,	from the emission source is indicated above under "Frequency and duration of exposure". A reduction of exposure duration can be achieved, for example,	local exhaust ventilation	78 % ful	fully or semi-automated process
Filling				local exhaust ventilation	78 %
Logistics	ventilated (positive pressure) control rooms	not required	n.a.	-	
	or by removing the worker from workplaces involved with relevant exposure.	local exhaust ventilation	78 %	-	

Organisational measures to prevent /limit releases, dispersion and exposure

In this section, non-technical measures related to good housekeeping, personal hygiene and to a good culture of occupational hygiene in general are described. Additionally, it is described how exposure to mercury can be assessed based on bio-monitoring and which strategies could be followed for such monitoring to protect worker's health. It is noted that the "Code of Practice" originally developed for the chlor-alkali industry (EUROCHLOR, 2010) has served as a basis to derive the measures as described below. The full text can be downloaded from the EUROCHLOR website.

<u>Creating a culture of safety</u>: Define and communicate a clear policy for controlling occupational exposure to mercury; Ensure managers set the example in terms of personal protection and hygiene; Where possible involve occupational physicians in making workers take control of their own urine mercury levels; Consider making low urine mercury levels a condition of employment, with disciplinary action taken where protective equipment and hygiene procedures are not followed; Involve managers when workers' urine mercury levels exceed action levels; Consider publicising company urine mercury performance to workers via notices and briefings to ensure the topic remains a key priority; Provide detailed training for new personnel on the risks of mercury exposure and the procedures for protection; Provide instruction on specific mercury exposure risks for workers undertaking new tasks; Provide regular refresher courses for all employees on the risks of mercury exposure and the procedures for protection; Involve worker representatives.

<u>Cleaning</u>: Ensure general shop cleanliness is maintained by frequent washing/vacuuming. Clean every workplace at the end of every shift. Ensure adequate lighting to easily locate and appropriately remove any potential mercury spills.

<u>Personal protective equipment</u>: Assess the need to wear respiratory protective equipment (RPE) in production areas. Consider use effective masks accompanied by a compliance policy (ensure proper shaving; ensure workers do not remove RPE in production areas in order to communicate). Where masks are used, employ formal mask cleaning and filter changing strategies; For workers in areas of significant exposure, provide sufficient working clothes to enable daily change into clean clothes. In such cases all work clothing should be cleaned by the employer on a daily basis and is not permitted to leave the work site. Please also consult the section on personal protective equipment below for detailed information on PPE for specific workplaces, processes or tasks.

<u>Personal hygiene</u>: Ensure workers follow simple hygiene rules (e.g. do not bite nails and keep them cut short, avoid touching or scratching face with dirty hands or gloves); Ensure workers do not wipe away sweat with hands or arms, e.g. by providing disposable perspiration towels; Ensure workers use disposable tissues rather than a handkerchief; Prohibit drinking, eating and smoking in production areas; Prevent access to eating and non-production areas in working clothes; Ensure workers as a minimum wash hands, arms, faces and mouths (but preferably shower) and change into personal clothing (or clean coveralls provided by the company) before entering eating areas; For high exposure workplaces, at the end of a shift, workers may need to pass through a room containing washbasins for the cleaning of hands, followed by a 'dirty' room for the removal of working clothes, then through showers into a 'clean' room for changing into personal clothing; Ensure workers handle dirty working clothes with care; Consider making showering obligatory at the end of a shift, and provide towels and soap; Allow no personal belongings to be taken into production areas, and allow no items that have been used in production areas to be taken home.

<u>Urine mercury monitoring</u>: The measurement of mercury in urine (HgU) is considered to be the best determinant of mercury body burden following long-term exposure. Mercury urinary figures reflect the exposure of the 3 or 4 previous months due to the relatively slow elimination of mercury from the human body. The aim of the recommended monitoring programme is for all individual HgU samples to be always below 30 μ g/g creatinine. The frequency of testing should be increased if the levels of mercury in urine increase. For individuals with HgU above 20 μ g/g creatinine, testing frequency should be at least 4 times a year, depending on the pattern of exposure. When levels are below 20 μ g/g creatinine, the testing frequency should mainly be determined by any changes in the working environment, with a minimum of 2 times a year.

Conditions and measures related to personal protection, hygiene and health evaluation					
Workplace	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)	
Raw material handling	half mask, Hg-P3 filter	APF=10			
Furnace treatment & distillation (under-pressure or hermetically closed furnaces)	half mask, Hg-P3 filter	APF=10	(nitrile) gloves are optional for process	standard working clothes	
Filling	half mask, Hg-P3 filter	APF=10	steps at ambient temperature	(overall) and safety shoes	
Logistics	not required	n.a.			
Cleaning and maintenance	half mask, Hg-P3 filter	APF=10			
Any RPE as defined above	shall only be worn if the foll	owing principles are im	plemented in parallel: Th	ne duration of work (compare with	

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

1.3.2. Control of environmental exposure

Product characteristics

Mercury is used in liquid form.

Amounts used

Exposure Scenarios based on 1,000t Hg/yr at a maximum RCR of 1 (See section 10.1)

Information type	Site tonnage (tonnes mercury)
Median (50 th percentile)	140
Min	26
Max	1,000
Data points	4
Selected for Generic Exposure Scenario	1,000

Frequency and duration of use

Production occurs 365 days per year per site (median 50^{th} %)

Information type	Emission days to water per site (d/y)	Emission days to air per site (d/y)
Median (50 th percentile)	290	256
Min	250	250
Max	330	330
Data points	4	4
Selected for Generic Exposure Scenario	290	265

Environment factors not influenced by risk management

A dilution factor of 1,000 is taken into account for freshwater to STP.

Other given operational conditions affecting environmental exposure

As there are no discharges of wastewater to marine water or freshwater by direct discharge, these exposure scenarios are not relevant for this sector and are therefore not included is this report. Two sites discharge their wastewater to an on-site WWTP with an effluent flow between 2 and 23 m³/day; which then discharges to a community sewer system (STP).

Technical conditions and measures at process level (source) to prevent release

None

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Following risk management measures (RMM), related to the environment, are implemented by the sites:

For emissions to water:

- Chemical precipitation
- Disposal of wastewater to off-site location

An overview of the applied measures is summarized in following table. The removal efficiency of the physico-chemical precipitation is 99.9 %, reported by two sites. For those having water emissions, 50 % of the waste recovery sites report an on-site WWTP and physico-chemical treatment. Both sites without water emission report wastewater disposal to an external WWTP. A third site combines all three risk management measures.

Table: Percentage of companies where the following RMMs related to water emissions are implemented

Risk management measure	Applied
Disposal of wastewater to off-site location	75 %
On-site Waste Water Treatment Plant by physico-chemical precipitation	50 %

In the actual exposure scenario where the wastewater is not only treated on-site but is followed by a biological treatment (municipal STP), the fraction of mercury removed by the STP is set at 76 % (CBS, 2008).

Emissions to air

The production sites implement the measures as stated in the following table. The removal efficiency of the active carbon filters is reported to be between 90 and 99.9 %. Three sites implemented an active carbon filter.

Table: Percentage of companies where the following RMMs related to air emissions are implemented

Risk management measure	Applied
Fabric or bag filters	50 %
Active carbon filters	75 %
Wet scrubbers	50 %

Waste related measures

Mercury-bearing waste resulting from the processes is stored on-site and removed to an off-site location. Detailed information on the amount of Hg substances in waste, type of waste, type of external treatment and fraction of substances released into the environment was not provided.

One site reports recording the weight of all output materials in order to present a complete treatment (material) balance. The administration completes and updates all data. Thus a transparent waste management for all input and output materials is provided.

Organizational measures to prevent/limit release from site

No specific organizational measures were considered.

Conditions and measures related to municipal sewage treatment plant

STP removal rate for mercury was set at 76 % (CBS, 2008).

Conditions and measures related to external treatment of waste for disposal

Mercury-bearing waste resulting from the processes is stored on-site and removed to an off-site location. Detailed information on the amount of Hg substances in waste, type of waste, type of external treatment and fraction of substances released into the environment was not provided.

Conditions and measures related to external recovery of waste

One site reports recording the weight of all output materials in order to present a complete treatment (material) balance. The administration completes and updates all data. Thus a transparent waste management for all input and output materials is provided.

Additional good practice advice (for environment) beyond the REACH CSA

Note: The measures reported in this section have not been taken into account in the exposure estimates related to the exposure scenario above. They are not subject to obligation laid down in Article 37 (4) of REACH, Thus, the downstream user is not obliged to

 $i) \qquad \text{carry out an own CSA and} \\$

ii) ii) to notify the use to the Agency, if he does not implement these measures.

Use specific measures expected to reduce the predicted exposure beyond the level estimated based on the exposure scenario.

1.1. Exposure estima	tion and refe	rence to	its sou	rce			
Occupational exposure							
In the Column "Urinary me characterisation ratio (RCR below 1 to demonstrate a sa) is the quotient o	f the expos	ure estim	ate and the res	pective DNEL (derived n	o-effect level) and has to be	
Workplace	Method expo assessme	Method used for exposure assessment (refer to introduction)		ry mercury els (RCR)	Method used for inhalation exposure assessment (refer to introduction)	Method used for dermal exposure assessment (refer to introduction)	
Raw material handling	measur	ed data	cr	2 μg Hg/g eatinine (0.87)			
Furnace treatment & distillation (under-pressure or hermetically closed furnation		ed data	cr	7 μg Hg/g eatinine (0.82)		inary mercury levels integrate al paths of exposure	
Filling	measur	ed data					
Logistics	measur	ed data	cr	μg Hg/g eatinine (0.22)			
Cleaning and maintenanc	e measur	ed data	cr) μg Hg/g eatinine (0.53)			
Environmental emissions							
Compartment	Value	Unit		Justification	n		
Environmental release factor to aquatic (before site STP)	on- 0.58	g/tonn	es	Maximum release factor reported by companies			
Environmental release factor to air (before APC) 235	g/tonn	es	Maximum release factor reported by companies			
PEC _{local} in aquatic pelagio (freshwater)	0.028	µg Hg	/L	$C_{local} of 6.76 * 10^{.5} \mu g$ Hg/L and a $PEC_{regional} of 0.028 \mu g$ Hg/L			
PEC _{local} in sediment (freshwater)	0.31	mg Hg	g/kg dw	$C_{\rm local}$ of 2.50 * 10 $^{-3}$ mg Hg/kg dw and a PEC_{\rm regional} of 0.300 mg Hg/kg dw			
PEC _{added} in soil (without sludge application)	1.68 * 10 ⁻²		g/kg dw	dw		a PEC _{regional} of 0.037 mg Hg/kg	
PEC in STP	2.40 * 10-4	µg Hg				n-site WWTP: 0.09 mg/L	
PEC _{total} air	41.1	ng Hg	/m ³	C _{local} of 38.1	ng Hg/m ³ and a PEC _{regiona}	al of 3.0 ng/m ³	
1.5. Guidance to DU	to evaluate w	hether h	ne work	s inside the	e boundaries set by	the ES	
Occupational exposure							
downstream user can demo operational conditions and the exposure (reflected in u DNEL for workers:	nstrate on his owr activities in questi rinary mercury le 30 µg Hg	that his in ion are cover vels) to a le /g creatinin upational e /L blood	nplemente ered by th evel below ne in urine	ed risk manage ne PROCs liste w the respective	ement measures are adequed above). This has to be o e DNEL as given below:	escribed above are met or the ate (given that the processes, lone by showing that they limit which can also be used when	
1.6. Risk characteris	ation: mercu	ry recov	ery froi	m waste			
Environment							
Compartment	PEC	PNEC	RCR	Justificati	on		
Aquatic pelagic (freshwater)	0.028	0.057	0.49			$EC_{regional} of 0.028 \mu g \; Hg/L$	
		0.2	0.03	C _{local} of 2.50 * 10^{-3} mg Hg/kg dw and a PEC _{regional} of 0.300 mg Hg/kg dw			
Sediment (freshwater)	0.31	9.3	0.05	dw $C_{\rm local} of 1.68 * 10^{-2} mg Hg/kg dw and a PEC_{\rm regional} of 0.037 mg Hg/kg$			
Sediment (freshwater) Soil (without sludge application)	0.31 1.68 * 10 ⁻²	9.3 0.022 (added)	0.03	dw			

IU 2 Production of phenyl mercury carboxylates

		rmat (1) addressin	g uses curricu	. our og	TOTA				
2.1. Title	!								
Free short	title	Use of mercury metal polyurethane production		lustry. Phen	yl me	rcury carbox	ylates are us	ed as catalyst in	
	title based on	SU 0 (Industrial and laboratory use) PC21, PC 0 (Catalysator)							
use descrip	otor	AC0 (poly-urethane) (appropriate PROCs and ERCs are given in Section 2 below)							
Processes, activities c	tasks and/or overed	Processes, tasks and/or	activities covered	are describ	oed in	Section 2 bel	ow.		
2.2. Ope	rational condi	tions and risk mai	nagement mea	sures					
Brief de	scription of overal	l operational conditions	referring to proces	s categorie	s (PR	OC) and envi	ronmental re	elease categories (ERC)	
ERC number	Name	Description				Dispersion emission set		Indoor/outdoor	
ERC 1	Manufacture of chemicals	Manufacture of inorganic substances Open/closed Industrial using continuous or batch processes applying dedicated or multipurpose equipment					Indoor		
		stance (potentially requies XI of REACH)	ired to demonstrate	e strictly co	ntrolle	ed conditions	of use to just	stify waiving of	
Workplace	2	Involved tasks					Involved	PROCs	
Production	of chemicals	mechanical unloading of liquid mercury, mixing, condensation, water elimination, distillation, liquid product obtained is filtered, regular cleaning and maintenance				1, 2, 3			
Filling of c	hemicals	filling of drums					8b		
2.3. Con	tributing ES								
2.3.1. Co	ntrol of work	ers exposure							
Product ch	aracteristic								
an assignm fugacity is process tem	ent of a so-called f based on the dustingerature and the n	roach, the substance-inf fugacity class in the ME ress of that substance. V nelting point of the subs ssion potential. The spra	ASE tool. For open whereas in hot meta tance. As a third g	ations conc al operation roup, high a	lucted s, fug ibrasiv	with solid su acity is tempore ve tasks are b	ibstances at erature base based on the	ambient temperature th d, taking into account th level of abrasion instead	
Workplace		Use in preparation	Content in prep			Physical form		Emission potential	
Production	of chemicals	not 1	estricted			liquid, slurry	1	low	
Filling		phenyl mercury carbox	ylates containing Hg	18-35 %		liquid		low	
Amounts u	sed								
scale of ope	eration (industrial	er shift is not considered vs. professional) and lev rocess-intrinsic emission	el of containment/						
Frequency	and duration of	use/exposure							
Workplace				Duratio	n of e	xposure			
Production	of chemicals			not	restric	cted			
Filling									
Human fac	tors not influenc	ed by risk managemen	t						
	-	uring all process steps is measures as described					: a 4		

Other given operational con	ditions affecting worl	kers exposure		
Workplace	Room volume	Indoor or outdoor use	Process temperature	Process pressure
Production of chemicals	> 1,000 m ³	indoors	ambient – elevated temperature	not restricted
Filling	> 100 m ³	indoors or outdoors	ambient	not restricted
Technical conditions and m	easures at process lev	el (source) to prevent releas	e	
Workplace	Level of	f containment	Level of	segregation
Production of chemicals	clos	ed process	not required	
Filling	closed process.	, transfer by pipelines	not r	equired
Technical conditions and m	easures to control dis	persion from source toward	s the worker	

Engineering and ventilation controls: basic aspects of equipment and facility design should be such that mercury emissions that may contribute to occupational exposures are minimised. Such measures may include enclosure of process equipment such that sources of dust or aerosol emissions are minimised, negative draft exhaust systems to reduce emissions from enclosures and/or local exhaust ventilation installed at unavoidable sources of process emissions. The design characteristics of any local exhaust ventilation (e.g. exhaust hoods) will be specific to the emission source being controlled. Area ventilation should also be balanced such that air flow within a work area moves from areas of low to high exposure potential. Air captured by ventilation controls may require treatment to minimise toxic substances prior to discharge or recirculation. Details on technical measures to control exposure are given below on a workplace basis.

Workplace	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information
Production of chemicals	Any potentially required separation of workers from the emission source is indicated above under "Frequency and duration of exposure". A reduction of	generic LEV	78 %	-
Filling	exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	general ventilation	17 %	-

Organisational measures to prevent /limit releases, dispersion and exposure

In this section, non-technical measures related to good housekeeping, personal hygiene and to a good culture of occupational hygiene in general are described. Additionally, it is described how exposure to mercury can be assessed based on bio-monitoring and which strategies could be followed for such monitoring to protect worker's health. It is noted that the "Code of Practice" originally developed for the chlor-alkali industry (EUROCHLOR, 2010) has served as a basis to derive the measures as described below. The full text can be downloaded from the EUROCHLOR website.

<u>Creating a culture of safety</u>: Define and communicate a clear policy for controlling occupational exposure to mercury; Ensure managers set the example in terms of personal protection and hygiene; Where possible involve occupational physicians in making workers take control of their own urine mercury levels; Consider making low urine mercury levels a condition of employment, with disciplinary action taken where protective equipment and hygiene procedures are not followed; Involve managers when workers' urine mercury levels exceed action levels; Consider publicising company urine mercury performance to workers via notices and briefings to ensure the topic remains a key priority; Provide detailed training for new personnel on the risks of mercury exposure and the procedures for protection; Provide instruction on specific mercury exposure risks for workers undertaking new tasks; Provide regular refresher courses for all employees on the risks of mercury exposure and the procedures for protection; Involve worker representatives.

<u>Cleaning</u>: Ensure general shop cleanliness is maintained by frequent washing/vacuuming. Clean every workplace at the end of every shift. Ensure adequate lighting to easily locate and appropriately remove any potential mercury spills.

<u>Personal protective equipment</u>: Assess the need to wear respiratory protective equipment (RPE) in production areas. Consider use effective masks accompanied by a compliance policy (ensure proper shaving; ensure workers do not remove RPE in production areas in order to communicate). Where masks are used, employ formal mask cleaning and filter changing strategies; For workers in areas of significant exposure, provide sufficient working clothes to enable daily change into clean clothes. In such cases all work clothing should be cleaned by the employer on a daily basis and is not permitted to leave the work site. Please also consult the section on personal protective equipment below for detailed information on PPE for specific workplaces, processes or tasks.

Personal hygiene: Ensure workers follow simple hygiene rules (e.g. do not bite nails and keep them cut short, avoid touching or scratching face with dirty hands or gloves); Ensure workers do not wipe away sweat with hands or arms, e.g. by providing disposable perspiration towels; Ensure workers use disposable tissues rather than a handkerchief; Prohibit drinking, eating and smoking in production areas; Prevent access to eating and non-production areas in working clothes; Ensure workers as a minimum wash hands, arms, faces and mouths (but preferably shower) and change into personal clothing (or clean coveralls provided by the company) before entering eating areas; For high exposure workplaces, at the end of a shift, workers may need to pass through a room containing washbasins for the cleaning of hands, followed by a 'dirty' room for the removal of working clothes, then through showers into a 'clean' room for changing into personal clothing; Ensure workers handle dirty working clothes with care; Consider making showering obligatory at the end of a shift, and provide towels and soap; Allow no personal belongings to be taken into production areas, and allow no items that have been used in production areas to be taken home.

<u>Urine mercury monitoring</u>: The measurement of mercury in urine (HgU) is considered to be the best determinant of mercury body burden following long-term exposure. Mercury urinary figures reflect the exposure of the 3 or 4 previous months due to the relatively slow elimination of mercury from the human body. The aim of the recommended monitoring programme is for all individual HgU samples to be always below 30 µg/g creatinine. The frequency of testing should be increased if the levels of mercury in urine increase. For individuals

with HgU above 20 μ g/g creatinine, testing frequency should be at least 4 times a year, depending on the pattern of exposure. When levels are below 20 μ g Hg/g creatinine, the testing frequency should mainly be determined by any changes in the working environment, with a minimum of 2 times a year.

Conditions and measures re	elated to personal prot	tection, hygiene and health	evaluation	
Workplace	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)
Production of chemicals	half mask, Hg-P3 filter	APF=10	PVC gloves EN420338	standard working clothes (overall) and safety shoes, for handling of corrosive substances: eye and face protection: Panoramic mask NOVA STANDARD CE 015 893
Filling	half mask, Hg-P3 filter	APF=10	PVC gloves EN420338	

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

2.3.2. Control of environmental exposure

Product characteristics

Mercury is used in liquid form.

Amounts used

Exposure Scenarios based on 120 Hg/yr at a maximum RCR of 1 (See section 10.1)

Information type	Site tonnage (tonnes mercury)
Reported value	120
Data points	1
Selected for Generic Exposure Scenario	120

Frequency and duration of use

Production occurs 220 days per year per site (median 50th %)

Information type	Emission days to water per site (d/y)	Emission days to air per site (d/y)
Reported value	220	220
Data points	1	1
Selected for Generic Exposure Scenario	220	220

Environment factors not influenced by risk management

A default dilution factor of 10 is taken into account for freshwater to STP.

Other given operational conditions affecting environmental exposure

Generic exposure scenarios for the freshwater compartment with direct discharge and the marine compartment were not included as they are not relevant for this sector. The selected dilution factor for the exposure scenario to STP is 10. An effluent flow of 18 m³/d is applied for the on-site WWTP and 475.200 m³/d for the STP discharge rate.

Technical conditions and measures at process level (source) to prevent release

None

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

Risk management measures (RMM), related to the environment, are implemented by the site.

For emissions to water:

• Chemical precipitation: used primarily to remove the metal ions

Selective resin

An overview of the applied measures is summarized in the following table. The removal efficiency of the chemical precipitation and selective resin is > 99.99 %. An automatic sewage compartment captures any accidental spillage of pollutant substances.

Table: Percentage of companies where the following RMMs related to water emissions are implemented

Risk management measure	%
On-site Waste water treatment plant	100
Chemical precipitation	100
Selective resin	100

In the actual exposure scenario, where the wastewater is not only treated on-site but is followed by a biological treatment (municipal STP), the fraction of mercury removed by a STP is set at 76% (CBS, 2008). Furthermore, by default, the sludge from a municipal STP is applied to agricultural soil.

For emissions to air:

A synopsis of the applied measures is summarized in the following table. The reported removal efficiency for the wet scrubbers is reported as > 99.99999 %. Fugitive site emissions are handled by absorption by inert carbons.

Table: Percentage of companies where the following RMMs related to air emissions are implemented

Risk management measure	%
Fabric or bag filters	100
Wet scrubbers	100

Organizational measures to prevent/limit release from site

No specific organizational measures were considered.

Conditions and measures related to municipal sewage treatment plant

STP removal rate for mercury was set at 76 % (CBS, 2008).

Conditions and measures related to external treatment of waste for disposal

Mercury-bearing waste resulting from the processes is stored on-site and removed to an off-site location. Detailed information on the amount of Hg substances in waste, type of waste, type of external treatment and fraction of substances released into the environment was not provided.

Conditions and measures related to external recovery of waste

In order to produce phenyl mercury carboxylates mercury metal is moved through an air-pressurized pipeline into a reactor where nitric acid is added. The generated nitrogen oxides are captured in scrubbers producing nitric acid. The nitric acid is used again in the process. 50% sodium hydroxide solution is added to control the pH value. The mercury oxide slurry is pumped to another reactor where by means of reflux, condensation, water elimination and distillation are carried out and the liquid final product is obtained. These processes are performed under closed conditions. After quality control the liquid product is filtered and transferred via pipelines to the final containers.

Additional good practice advice (for environment) beyond the REACH CSA

Note: The measures reported in this section have not been taken into account in the exposure estimates related to the exposure scenario above. They are not subject to obligation laid down in Article 37 (4) of REACH, Thus, the downstream user is not obliged to

iii) carry out an own CSA and

iv) ii) to notify the use to the Agency, if he does not implement these measures.

Use specific measures expected to reduce the predicted exposure beyond the level estimated based on the exposure scenario.

2.4. Exposure estimation and reference to its source

Occupational exposure

In the Column "Urinary mercury levels" below, the 90th percentile of the measured urinary mercury levels is provided. The risk characterisation ratio (RCR) is the quotient of the exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For urinary mercury levels, the RCR is based on a DNEL for 30 μ g Hg/g creatinine in urine.

Workplace	Method used for exposure assessment (refer to introduction)	Urinary mercury levels (RCR)	Method used for inhalation exposure assessment (refer to introduction)	Method used for dermal exposure assessment (refer to introduction)
Production of chemicals	measured data	27.0 µg Hg/g creatinine (0.90)	not relevant because urinary mercury levels integra relevant paths of exposure	
Filling	measured data	20.9 µg Hg/g creatinine (0.70)		

Environmental emissions			
Compartment	Value	Unit	Justification
Environmental release factor to aquatic (before on-site STP)	0.71	g/tonnes	Maximum release factor reported by company
Environmental release factor to air (before APC)	1.79	g/tonnes	Maximum release factor reported by company
PEC _{local} in aquatic pelagic (freshwater)	0.028	µg Hg/L	C_{local} of 5.12 * 10 $^{-5}\mu g$ Hg/L and a PEC $_{regional}$ of 0.028 μg Hg/L
PEC _{local} in sediment (freshwater)	0.30	mg Hg/kg dw	$C_{\rm local}$ of 8.60 * 10 4 mg Hg/kg dw and a $PEC_{\rm regional}$ of 0.300 mg Hg/kg dw
PEC _{added} in soil (with sludge application)	1.06 * 10-4	mg Hg/kg dw	$C_{\rm local}$ of 1.06 * 10 4 mg Hg/kg dw and a PEC_{\rm regional} of 0.037 mg Hg/kg dw
PEC _{added} in soil (without sludge application)	7.21 * 10 ⁻⁵	mg Hg/kg dw	$C_{\rm local}$ of 7.21 * 10 5 mg Hg/kg dw and a $PEC_{\rm regional}$ of 0.037 mg Hg/kg dw
PEC in STP	1.80 * 10-4	µg Hg/L	Measured effluent concentration in on-site WWTP: 20 µg/L
PEC _{total} air	3.2	ng Hg/m ³	$C_{\rm local} of 0.2 \; ng\; Hg/m^3$ and a $PEC_{\rm regional} of 3.0 \; ng/m^3$

2.5. Guidance to DU to evaluate whether he works inside the boundaries set by the ES

Occupational exposure

The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his implemented risk management measures are adequate (given that the processes, operational conditions and activities in question are covered by the PROCs listed above). This has to be done by showing that they limit the exposure (reflected in urinary mercury levels) to a level below the respective DNEL as given below:

DNEL for workers: $30 \ \mu g \ Hg/g$ creatinine in urine

Additionally, the scientific committee on occupational exposure limits has set the following limit values, which can also be used when assessing exposure:

DNEL for workers:10 μg Hg/L bloodDNEL for workers:0.02 mg Hg/m³ air

2.6. Risk characterization

Environmental emissions				
Compartment	PEC	PNEC	RCR	Justification
Aquatic pelagic (freshwater)	0.028	0.057	0.49	$C_{\rm local} of 5.12$ * $10^{\text{-5}} \mu g$ Hg/L and a $PEC_{\rm regional} of 0.028 \mu g$ Hg/L
Sediment (freshwater)	0.30	9.3	0.03	$C_{\rm local}$ of 8.60 * 10 4 mg Hg/kg dw and a $PEC_{\rm regional}$ of 0.300 mg Hg/kg dw
Soil (with sludge application)	1.06 * 10-4	0.022 (added)	0.005	$C_{\rm local} of 1.06 * 10^{-4} \mbox{ mg Hg/kg dw}$ and a $PEC_{\rm regional} of 0.037 \mbox{ mg Hg/kg dw}$
Soil (without sludge application)	7.21 * 10 ⁻⁵	0.022 (added)	0.003	$C_{\rm local}$ of 7.21 * 10 $^{-5}$ mg Hg/kg dw and a PEC $_{\rm regional}$ of 0.037 mg Hg/kg dw
Sewage	1.80 * 10-4	2.25	8.1 * 10-5	

IU 3 Chlor-alkali electrolysis

3.1. Title										
Free short t	itle	Use of mercury metal in the chlor-alkali	industry							
Systematic	title based	SU 3 (Industrial uses),SU 17, SU 20								
on use desc		(appropriate PROCs and ERCs are given in Section 2 below)								
Processes, t activities co	asks and/or vered	Processes, tasks and/or activities covered are described in Section 2 below.								
3.2. Oper	ational cor	ditions and risk management m	easures							
		l operational conditions referring to proces		and environment	al release categories (ER	C)				
ERC number	Name	Description	Level of containmen	Dispersion emission so		ıtdoo				
ERC 1	Manufacture chemicals	Manufacture of inorganic substance using continuous or batch processes applying dedicated or multipurpose equipment	3	l Industrial	Indoor					
		substance (potentially required to demonst nnex XI of REACH)	rate strictly controlle	d conditions of us	se to justify waiving of					
Workplace		Involved tasks	Involved PROCs							
		refilling of cells to compensate for losses	8b, 9							
Chlor-alkal	i process [*]	electrolysis, mercury cell process, reaction	1, 2, 3							
	-	liquid amalgam flows from the electroly with water, mercury is fed back into the	1, 2, 3							
3.3.1 Con	trol of wor	kers exposure								
Product cha	aracteristic									
by an assign temperature, taking into a level of abra medium emi	ment of a so-c , the fugacity i account the pro- sion instead of	approach, the substance-intrinsic emission alled fugacity class in the MEASE tool. For s based on the dustiness of that substance. cess temperature and the melting point of f the substance intrinsic emission potential	or operations conduct Whereas in hot meta the substance. As a th	ed with solid sub l operations, fuga hird group, high a leous solutions is	stances at ambient city is temperature based brasive tasks are based o assumed to be involved v	, n the with a				
Workplace		Use in preparation	preparation	Physical form	Emission potentia					
Chlor-alkal	i process	not restricted		liquid	low	-				
	bos									
	seu					-				
Amounts us The actual to scale of open	onnage handle	d per shift is not considered to influence the al vs. professional) and level of containment the process-intrinsic emission potential.	1			f the				
Amounts us The actual to scale of open is the main c	onnage handle ration (industri leterminant of	al vs. professional) and level of containme	1			f the				
Amounts us The actual to scale of oper is the main o Frequency a	onnage handle ration (industri leterminant of	al vs. professional) and level of containme the process-intrinsic emission potential.	1	flected in the PRC		f the				
Amounts us The actual to scale of oper is the main of Frequency a Workplace	onnage handle ration (industri leterminant of and duration	al vs. professional) and level of containme the process-intrinsic emission potential.	ent/automation (as rel	flected in the PRC		f the				
Amounts us The actual to scale of open is the main of Frequency a Workplace Chlor-alkal	onnage handle ration (industri leterminant of and duration	al vs. professional) and level of containme the process-intrinsic emission potential.	Duration of expo	flected in the PRC		f the				

^{*} Mercury flows in a closed circuit

	Other given operational conditions affecting workers exposure					
Workplace	Room volume	Indoor or outdoor use	Process temperature	Process pressure		
Chlor-alkali process	>1,000m ³	Indoors and outdoors	up to 130°C	not restricted		
Technical conditions and	measures at process level (source) to	prevent release	r			
Workplace	Level of containment		Level of segregation			
Chlor-alkali process	closed process, mercury flows in closed circle (all sub-processes except for occasional refills)		not required			
Technical conditions and	measures to control dispersion from	source towards the w	orker			
contribute to occupational dust or aerosol emissions a ventilation installed at una hoods) will be specific to t area moves from areas of l	n controls: basic aspects of equipment as exposures are minimised. Such measures are minimised, negative draft exhaust system voidable sources of process emissions. The emission source being controlled. Are ow to high exposure potential. Air captu ge or recirculation. Details on technical	as may include enclosu stems to reduce emissis The design characterist ea ventilation should a ured by ventilation con	re of process equi ons from enclosur ics of any local ex llso be balanced su trols may require	pment such that so es and/or local exh haust ventilation (ich that air flow w treatment to minim	ources of naust (e.g. exhaust ithin a work nise toxic	
Workplace	Level of separation		Localised controls (LC)	Efficiency of LC (according to MEASE)	Further informatio n	
Chlor-alkali process	Any potentially required separation of emission source is indicated above ur duration of exposure". A reduction of can be achieved, for example, by t ventilated (positive pressure) control n of chlorine leaks exists, or by removi workplaces involved with relev	nder "Frequency and f exposure duration the installation of rooms where the risk ing the worker from	Localised controls, such as local exhaust ventilation or separation of workers from potential emission sources, shall be selected in accordance to the "code of practice" described below.		-	
Organisational measures	to prevent /limit releases, dispersion a	and exposure				
downloaded from the EUR <u>Creating a culture of safety</u> set the example in terms of control of their own urine taken where protective equ exceed action levels; Cons remains a key priority; Pro- Provide instruction on sper employees on the risks of <u>Cleaning</u> : Ensure general s shift. Ensure adequate ligh <u>Personal protective equipm</u> effective masks accompan order to communicate). W significant exposure, provi- be cleaned by the employee protective equipment below <u>Personal hygiene</u> : Ensure scratching face with dirty I perspiration towels; Ensure	y (EUROCHLOR, 2010) has served as a COCHLOR website. <i>y</i> : Define and communicate a clear policy f personal protection and hygiene; When mercury levels; Consider making low ur tipment and hygiene procedures are not ider publicising company urine mercury wide detailed training for new personnel cific mercury exposure risks for workers mercury exposure and the procedures for shop cleanliness is maintained by frequent ting to easily locate and appropriately re- nent: Assess the need to wear respiratory ied by a compliance policy (ensure prop- here masks are used, employ formal mass de sufficient working clothes to enable or r on a daily basis and is not permitted to w for detailed information on PPE for sp workers follow simple hygiene rules (e.g hands or gloves); Ensure workers do not e workers use disposable tissues rather than access to eating and non-production area	y for controlling occup e possible involve occu- ine mercury levels a cr followed; Involve man performance to workde on the risks of mercur- undertaking new task r protection; Involve w nt washing/vacuuming emove any potential may protective equipment er shaving; ensure wor sk cleaning and filter c daily change into clean leave the work site. P ecific workplaces, pro g, do not bite nails and wipe away sweat with han a handkerchief; Pr	pational exposure upational physicia ondition of employ hagers when worke ers via notices and ry exposure and the s; Provide regular vorker representati g. Clean every wor ercury spills. (RPE) in product rkers do not remov hanging strategies in clothes. In such of lease also consult cesses or tasks. keep them cut sho hands or arms, e. ohibit drinking, ez	to mercury; Ensure ns in making work yment, with discip ers' urine mercury briefings to ensure e procedures for p refresher courses i ves. kplace at the end o ion areas. Consider re RPE in producti ; For workers in a cases all work cloth the section on person ert, avoid touching g. by providing dis- ting and smoking	e managers sers take linary action levels e the topic rotection; for all of every r use on areas in reas of hing should sonal or sposable	

Conditions and measures	s related to personal p	rotection, hygien	e and health evaluat	ion			
Workplace	Specification of protective equip	respiratory	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)		
Chlor-alkali process	RPE shall be selee pract	cted in accordance ice" described abo		(nitrile) gloves are optional for process steps at ambient temperature	standard working clothes (overall) and safety shoes		
"duration of exposure" abo	ove) should reflect the a ncreased thermal stress	dditional physiolo by enclosing the	gical stress for the w head. In addition, it s	orker due to the b	uration of work (compare with reathing resistance and mass of that the worker's capability of		
For reasons as given above RPE), (ii) have suitable fac recommended devices abo face properly and securely	e, the worker should the cial characteristics reduc ve, which rely on a tigh	refore be (i) health cing leakages betw t face seal, will no	hy (especially in view veen face and mask (i of provide the required	in view of scars ar d protection unles	s they fit the contours of the		
The employer and self-emp the management of their co- protective device programm An overview of the APFs of	prrect use in the workpla me including training of	ace. Therefore, the first the workers.	ey should define and	document a suitab			
3.3.2 Control of envi	ironmental exposi	ıre					
Product characteristics							
Mercury is used in liquid f	orm.						
Amounts used							
Exposure Scenarios based	on 193,600 T Cl/yr at a	maximum RCR o	of 1 (See section 10.1)			
	Information type			Site tonnage	(tonnes Cl)		
	Data points			37	,		
	Median			125,276			
	90 th percentile			193,600			
	Min			10,417			
	Max			346,000			
Selected f	for Generic Exposure So	cenario		193,600			
Frequency and duration	of use						
Production occurs 220 day	s per year per site (med	ian 50 th %)					
Informati			to water per site (d	/y) Emissio	n days to air per site (d/y)		
Selected for Generic	Exposure Scenario	30	00 (default)		300 (default)		
Environment factors not	influenced by risk ma	nagement					
A default dilution factor of For the freshwater compar			en.				
Other given operational	conditions affecting en	vironmental exp	osure				
It is unclear for the momer directly after a physico-che				Treatment Plant (STP) (biological treatment) or		
(ES 1) next to a direct disc	harge scenario (ES 2). I	Next to both fresh ure scenarios are	water scenarios, a gen 100 for both freshwat	neric ES is propos er ES, and 100 –a	reshwater exposure scenario ed for the marine environment s default- for the marine		
	luent flow of 2000 m ³ /d	l is applied for the	on-site WWTP and	STP.			
The selected dilution facto environment. A default eff Technical conditions and		^		STP			

Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil

The following risk management measures related to the environment are implemented (Source BAT reference document, 2001). Water emissions

water emissions

Mercury emitted from mercury cell facilities mainly arises from:

- the process: bleed from brine purification, condensate from hydrogen drying, condensate from caustic soda concentration units, brine leakage, ion-exchange eluate from process- water treatment
- the wash water from the cell cleaning operations: inlet and outlet boxes
- the rinsing water from the electrolysis hall: cleaning of the floors, tanks, pipes and dismantled apparatus
- the rinsing water from maintenance areas outside the electrolysis hall, if they are cleaned with water

Mercury-contaminated waste water streams are collected from all sources and generally treated in a waste-water treatment plant. The amount of waste water can be reduced by filtration and washing of the sludges to remove mercury before feeding the condensate back into the brine.

Several processes are in use which are capable of purifying both depleted brine as it leaves the plant and all other mercury-containing waste-water streams. For example the mercury in the depleted brine can be removed by precipitation as sulphide and recycled in the brine.

One or more of the following measures (as set out in in the BAT Reference Document on Chlor-alkali manufacturing plants), are to be taken for emissions to water:

- Treatment with hydrazine
- Sedimentation
- Sand filtration
- Carbon filtration
- Reverse osmosis: extensively used for the removal of dissolved metals
- Ion exchange

The percentage of sites which implements one of the above mentioned risk management measures (RMM) related to environmental water emissions is unknown. EUROCHLOR (personal communication) reports the use of on-site WWTP but removal efficiency is not known.

By default, the generic exposure scenario where the wastewater is treated on-site but followed by a biological treatment (e.g.; a municipal STP is also considered. The fraction of mercury removed by an STP is set at 76% (CBS, 2008). Furthermore, by default, the sludge from a municipal STP is applied to agricultural soil.

Air emissions

Air emissions consist of mercury vapour coming from:

- cell-room ventilation
- process exhausts
- brine purification
- stack of caustic evaporators
- hydrogen burnt or vented to atmosphere
- mercury retorting
- maintenance outside cell room
- Mercury is removed by:
 - scrubbing with hypochlorite, chlorinated brine or using a calomel reaction, or
 - using a sulphurised charcoal system.

The removal efficiency of the RMM is not reported neither is the percentage of sites that implement one of the above mentioned risk management measures (RMM) related to environmental air emissions known.

Organizational measures to prevent/limit release from site

No specific organizational measures were considered.

Conditions and measures related to municipal sewage treatment plant

STP removal rate for mercury was set at 76 % (CBS, 2008).

Conditions and measures related to external treatment of waste for disposal

Solid wastes can arise at several points in the process. Wastes containing mercury include: sludges from waste water treatment, solids generated during brine purification (filter residue), spent graphite from decomposer cells, sludges from caustic filters (spent caustic filters from the filtration of caustic solution such as graphite candles), etc.

Mercury-bearing wastes resulting from the processes described above is removed by a licensed waste removal company and landfilled after stabilization, incinerated, or recycled for reuse.

Conditions and measures related to external recovery of waste

No specific data is available.

3.4 Exposure estimation and reference to its source **Occupational exposure** In the Column "Urinary mercury levels" below, the 90th percentile of the measured urinary mercury levels is provided. The risk characterisation ratio (RCR) is the quotient of the exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For urinary mercury levels, the RCR is based on a DNEL for 30 µg Hg/g creatinine in urine. Method used for inhalation Method used for dermal Method used for exposure Urinary mercury exposure exposure assessment (refer Workplace assessment assessment (refer to introduction) levels (RCR) to introduction) (refer to introduction) < 30 µg Hg/g approximated from aggregated not relevant because urinary mercury levels Chlor-alkali process creatinine measured data integrate all relevant paths of exposure (< 1) **Environmental emissions** Compartment Value Unit Justification **Environmental release factor** g Hg/tonnes Cl₂ to aquatic (before on-site 0.02 Median release factor reported by company capacity STP) **Environmental release factor** g Hg/tonnes Cl₂ 0.3 BAT release factor to air (before APC) capacity $\overline{C_{local} \, of \, 0.0044 \; \mu g}$ Hg/L and a $PEC_{regional} \, of$ PEC_{local} in aquatic pelagic 0.032 µg Hg/L (freshwater to STP) 0.028 µg Hg/L **PEC**_{local} in aquatic pelagic $C_{local}\, of \, 0.0182 \; \mu g \; Hg/L$ and a $PEC_{regional}\, of$ 0.046 (freshwater with direct µg Hg/L 0.028 µg Hg/L discharge) Clocal of 0.0182 mg Hg/L and a PEC_{regional} of PEC_{local} in aquatic pelagic 0.021 mg Hg/L (marine) 0.003 mg Hg/L PEC_{local} in sediment Clocal of 0.73 mg Hg/kg dw and a PEC_{regional} of 1.03 mg/kg dw 0.3 mg Hg/kg dw (freshwater to STP) PEC_{local} in sediment Clocal of 3.05 mg Hg/kg dw and a PEC_{regional} of (freshwater with direct 3.35 mg/kg dw 0.3 mg Hg/kg dw discharge) Clocal of 3.05 mg Hg/kg dw and a PECregional of PEC_{local} in sediment (marine) 3.15 mg/kg dw 0.1 mg Hg/kg dw $C_{\rm local}\, of \, 0.0017 \mbox{ mg Hg/kg}$ dw and a $PEC_{\rm regional}$ PEC_{added} in soil (direct 0.0126 mg Hg/kg dw of 0.037 mg Hg/kg dw discharge) PEC_{added} in soil (STP without C_{local} of 0.0017 mg Hg/kg dw and a PEC_{regional} 0.0195 mg Hg/kg dw sludge application) of 0.037 mg Hg/kg dw Calculated effluent concentration in on-site PEC in STP 1.55 µg Hg/L WWTP: 6 µg/L C_{local} of 44.2 ng Hg/m³ and a PEC_{regional} of 3.0 PEC_{total} air 47.2 ng Hg/m³ ng/m³ 3.5 Guidance to DU to evaluate whether he works inside the boundaries set by the ES **Occupational exposure** The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his implemented risk management measures are adequate (given that the processes, operational conditions and activities in question are covered by the PROCs listed above). This has to be done by showing that they limit the exposure (reflected in urinary mercury levels) to a level below the respective DNEL as given below:

DNEL for workers:

 $30\,\mu g$ Hg/g creatinine in urine

Additionally, the scientific committee on occupational exposure limits has set the following limit values, which can also be used when assessing exposure:

DNEL for workers:10 μg Hg/L bloodDNEL for workers:0.02 mg Hg/m³ air

3.6 Risk characterization							
Environment							
Compartment	PEC	PNEC	RC R	Justification			
Aquatic pelagic (freshwater to STP)	0.032	0.057	0.56	$C_{local} of 0.0044 \; \mu g$ Hg/L and a $PEC_{regional} of 0.028 \; \mu g$ Hg/L			
Aquatic pelagic (freshwater with direct discharge)	0.046	0.057	0.80	$C_{local} of 0.0182 \; \mu g$ Hg/L and a $PEC_{regional} of 0.028 \; \mu g$ Hg/L			
Aquatic pelagic (marine)	0.021	0.067	0.32	$C_{local} of 0.0182~\mu g$ Hg/L and a $PEC_{regional} of 0.003~\mu g$ Hg/L			
PEC _{local} in sediment (freshwater to STP)	1.03	9.3	0.11	$C_{\rm local}$ of 0.73 mg Hg/kg dw and a PEC_{\rm regional} of 0.3 mg Hg/kg dw			
PEC _{local} in sediment (freshwater with direct discharge)	3.35	9.3	0.36	$C_{\rm local} of 3.05 \mbox{ mg Hg/kg dw}$ and a $PEC_{\rm regional} of 0.3 \mbox{ mg Hg/kg dw}$			
PEC _{local} in sediment (marine)	3.15	9.3	0.34	$C_{\rm local} of \; 3.05 \; mg \; Hg/kg \; dw$ and a $PEC_{\rm regional} \; of \; 0.1 \; mg \; Hg/kg \; dw$			
Soil (direct discharge)	0.0126	0.022 (added)	0.57	$C_{local} of 0.0017 \mbox{ mg Hg/kg dw}$ and a $PEC_{regional}$ of 0.037 $mg \mbox{ Hg/kg dw}$			
Soil (STP without sludge application)	0.0195	0.022 (added)	0.89	$C_{local} of 0.0017 \mbox{ mg Hg/kg dw}$ and a $PEC_{regional}$ of 0.037 $mg \mbox{ Hg/kg dw}$			
Sewage	1.55	2.25	0.69	Selected for freshwater ES to STP			

IU 4 Production of mercury dispensers for discharge lamps

4.1 Title		mar (1)	addressing uses carried	out by worke			
Free short	title						
Systematic title based on use			SU 3 (industrial uses), SU 15 PC 7				
descriptor	the based on use				C2		
			(appro	priate PROCs and	ERCs are given below	')	
Processes, 1 covered	tasks and/or activi	ities	Processes, tasks and/or activitie	es covered are des	scribed below.		
4.2 Operation	ational conditi	ons and	risk management measu	ires			
Brief descri	ption of overall ope	erational co	onditions referring to process cat	egories (PROC) a	and environmental relea	se catego	ories (ERC)
ERC number	Name		Description	Level of containment	Dispersion of emission sources	Ind	oor/outdoor
ERC 3	Formulation in materials	which w bound in such as p batches o instance PVC ma crystal g	or blending of substances, ill be physically or chemically to or onto a matrix (material) blastics additives in master or plastic compounds. For a plasticizers or stabilizers in ster-batches or products, rowth regulator in aphic films etc.	Open/closed	Industrial	Inde	DOR
	sites using the subs according to Anne		entially required to demonstrate s EACH)	strictly controlled	conditions of use to jus	tify waiv	ving of
Workplace			Involved tasks				
Mercury h	andling		delivery (mercury in bottles), weighing, filling of reaction vessel				
Formulatio	on, pre-treatment		thermal cycle in a chamber of t	er of the resistance oven			2, 4, 22
Mechanica	l processing		grinding, milling, bonding (by compression) onto metal strip, cutting of strips, forming				
Lamp prod	luction		dosing liquid mercury in the lamp or placing mercury capsule in the lamp				9, 21
Handling o lamps	f lamps / recyclinį	g of	packaging of lamps, unloading of end-of-life-lamps, loading of the feeder in the recycling unit, disassembly of lamps				21
Logistics			internal logistics, also including administration, R&D, supervision				8b, 9, 21
Cleaning, n of waste	naintenance and h	andling	overhaul and cleaning of production equipment, maintenance 8a, 8b				8a, 8b

4.3 Contributing exposure scen	arios							
4.3.1 Control of workers expos	ure							
Product characteristic								
According to the MEASE approach, the s by an assignment of a so-called fugacity the fugacity is based on the dustiness of t the process temperature and the melting p instead of the substance intrinsic emission	class in the MEA hat substance. W point of the subs	ASE tool. For operations cond thereas in hot metal operation tance. As a third group, high	lucted with solid substances ns, fugacity is temperature ba abrasive tasks are based on t	at ambient temperature ased, taking into account he level of abrasion				
Workplace	Use in preparation Content in preparation Physical form Emission potential							
Mercury handling		not restricted	liquid	low				
Formulation, pre-treatment		not restricted	liquid	low (high for hot processes)				
Mechanical processing		not restricted	massive / powder	very low - high				
Lamp production		not restricted	liquid or massive	very low - low				
Handling of lamps / recycling of lamps	article	<300 mg Hg in the lamps or 0.001 wt.% Hg	massive	very low				
Logistics		not restricted	liquid	low				
Cleaning, maintenance and handling of waste		not restricted	liquid	low				
Amounts used								
The actual tonnage handled per shift is no scale of operation (industrial vs. profession the main determinant of the process-intrin	onal) and level of	f containment/automation (as						
Frequency and duration of use/exposu	re							
Workplace			Duration of e	exposure				
Mercury handling								
Formulation, pre-treatment								
Mechanical processing								
Lamp production			not restricted					
Handling of lamps / recycling of lamps								
Logistics								
Cleaning, maintenance and handling o	f waste							
Human factors not influenced by risk n	nanagement							
The shift breathing volume during all pro Refer to occupational hygiene measures a mercury levels.	-			e variation in urinary				
Other given operational conditions affe	ecting workers	exposure						
Workplace	Room volume	Indoor or outdoor use	Process temperature	Process pressure				
Mercury handling	> 1,000 m ³	indoors	ambient	not restricted				
Formulation, pre-treatment	> 1,000 m ³	indoors	ambient – high temperature	not restricted				
Mechanical processing	> 1,000 m ³	indoors	ambient	not restricted				
Lamp production	> 1,000 m ³	indoors	ambient	not restricted				
Handling of lamps / recycling of lamps		indoors	ambient	not restricted				
Logistics	not restricted	indoors	ambient	not restricted				
Cleaning, maintenance and handling of waste		indoors	ambient	not restricted				

Technical conditions and measur	res at process level (source) to preven	t release			
Workplace	Level of containmen	nt	Le	vel of segregation	
Mercury handling	weighing and batch preparation box	n in a glove		not required	
Formulation, pre-treatment	hermetically sealed vessel, pl secondary chamber (furn		not required		
Mechanical processing	operation under controlled at	mosphere		not required	
Lamp production	closed process (sealed condition dosing, glove box	ons) during		not required	
Handling of lamps / recycling of lamps	not required			not required	
Logistics	not required			not required	
Cleaning, maintenance and hand of waste	lling not required			not required	
Technical conditions and measur	res to control dispersion from source	towards the	e worker		
contribute to occupational exposur or aerosol emissions are minimisec installed at unavoidable sources of be specific to the emission source I from areas of low to high exposure	Is: basic aspects of equipment and facil es are minimised. Such measures may i l, negative draft exhaust systems to redu process emissions. The design character being controlled. Area ventilation shoul potential. Air captured by ventilation c Is on technical measures to control exp	nclude enclo uce emission eristics of an d also be ba controls may	osure of process equ as from enclosures a y local exhaust vent lanced such that air require treatment to	ipment such that sour nd/or local exhaust ve ilation (e.g. exhaust h flow within a work ar o minimise toxic subst	ces of dust entilation oods) will ea moves
Workplace	Level of separation	Localise	ed controls (LC)	Efficiency of LC (according to MEASE)	Further informati on
Mercury handling			haust ventilation, hber is valved off		-
Formulation, pre-treatment			ipped with a cold trap	10 ACH	-
Mechanical processing			our extractor with apour collector	10 ACH	-
Lamp production	Any potentially required separation of workers from the emission source is indicated above under "Frequency	local exhaust ventilation		78 %	fully automated operation
Handling of lamps / recycling of lamps	and duration of exposure". A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	local ex	haust ventilation	78 %	manual operation for the handling of lamps, recycling is conducted in fully automated processes
Logistics		no	ot required	n.a.	-
Cleaning, maintenance and handling of waste		local ex	haust ventilation	78 %	-
Organisational measures to prev	ent /limit releases, dispersion and exp	posure			
general are described. Additionally could be followed for such monitor chlor-alkali industry (EUROCHLC downloaded from the EUROCHLC	ures related to good housekeeping, pers 7, it is described how exposure to mercu- ring to protect worker's health. It is not OR, 2010) has served as a basis to derive OR website. e and communicate a clear policy for co	ry can be as ed that the " e the measur	sessed based on bio Code of Practice" or res as described belo	-monitoring and whic riginally developed fo w. The full text can b	h strategies r the e

<u>Creating a culture of safety</u>: Define and communicate a clear policy for controlling occupational exposure to mercury; Ensure managers set the example in terms of personal protection and hygiene; Where possible involve occupational physicians in making workers take control of their own urine mercury levels; Consider making low urine mercury levels a condition of employment, with disciplinary action taken where protective equipment and hygiene procedures are not followed; Involve managers when workers' urine mercury levels exceed action levels; Consider publicising company urine mercury performance to workers via notices and briefings to ensure the topic remains a key priority; Provide detailed training for new personnel on the risks of mercury exposure and the procedures for protection; Provide instruction on specific mercury exposure risks for workers undertaking new tasks; Provide regular refresher courses for all employees on the risks of mercury exposure and the procedures for protection; Involve worker representatives.

<u>Cleaning</u>: Ensure general shop cleanliness is maintained by frequent washing/vacuuming. Clean every workplace at the end of every shift. Ensure adequate lighting to easily locate and appropriately remove any potential mercury spills.

Personal protective equipment: Assess the need to wear respiratory protective equipment (RPE) in production areas. Consider use effective

masks accompanied by a compliance policy (ensure proper shaving; ensure workers do not remove RPE in production areas in order to communicate). Where masks are used, employ formal mask cleaning and filter changing strategies; For workers in areas of significant exposure, provide sufficient working clothes to enable daily change into clean clothes. In such cases all work clothing should be cleaned by the employer on a daily basis and is not permitted to leave the work site. Please also consult the section on personal protective equipment below for detailed information on PPE for specific workplaces, processes or tasks.

Personal hygiene: Ensure workers follow simple hygiene rules (e.g. do not bite nails and keep them cut short, avoid touching or scratching face with dirty hands or gloves); Ensure workers do not wipe away sweat with hands or arms, e.g. by providing disposable perspiration towels; Ensure workers use disposable tissues rather than a handkerchief; Prohibit drinking, eating and smoking in production areas; Prevent access to eating and non-production areas in working clothes; Ensure workers as a minimum wash hands, arms, faces and mouths (but preferably shower) and change into personal clothing (or clean coveralls provided by the company) before entering eating areas; For high exposure workplaces, at the end of a shift, workers may need to pass through a room containing washbasins for the cleaning of hands, followed by a 'dirty' room for the removal of working clothes, then through showers into a 'clean' room for changing into personal clothing; Ensure workers handle dirty working clothes with care; Consider making showering obligatory at the end of a shift, and provide towels and soap; Allow no personal belongings to be taken into production areas, and allow no items that have been used in production areas to be taken home.

<u>Urine mercury monitoring</u>: The measurement of mercury in urine (HgU) is considered to be the best determinant of mercury body burden following long-term exposure. Mercury urinary figures reflect the exposure of the 3 or 4 previous months due to the relatively slow elimination of mercury from the human body. The aim of the recommended monitoring programme is for all individual HgU samples to be always below 30 μ g/g creatinine. The frequency of testing should be increased if the levels of mercury in urine increase. For individuals with HgU above 20 μ g/g creatinine, testing frequency should be at least 4 times a year, depending on the pattern of exposure. When levels are below 20 μ g Hg/g creatinine, the testing frequency should mainly be determined by any changes in the working environment, with a minimum of 2 times a year.

Conditions and measures related to personal protection, hygiene and health evaluation								
Workplace	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)				
Mercury handling	half and full face mask with Hg vapour filter HgP3 EN14387	APF=10	latex and nitrile gloves					
Formulation, pre-treatment	half and full face mask with Hg vapour filter HgP3 EN14387	APF=10	latex and nitrile gloves					
Mechanical processing	half and full face mask with Hg vapour filter HgP3 EN14387	APF=10	latex and nitrile gloves	standard working clothes (overall) and				
Lamp production	not required	na		safety shoes				
Handling of lamps / recycling of lamps	not required	na	gloves are optional for process steps at ambient temperature					
Logistics	not required	na	temperature					
Cleaning, maintenance and handling of waste	half and full face mask with Hg vapour filter HgP3 EN14387	APF=10	latex and nitrile gloves					

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

4.3.2 Control of environmental exposure

Product characteristics

Mercury is used in liquid form.

Amounts used

TR			
Information type		Site tonnage (tonnes)	
Data points		1	
Value		12.7	
Selected for Generic Exposure Sce	nario	120	
Frequency and duration of use			
Production occurs 220 days per year per site (medi	ian 50 th %)		
Information type	Emission days to water per si	te (d/y) Emission days to air per site (d/y)	
Selected for Generic Exposure Scenario	0 (not applicable)	228	
Environment factors not influenced by risk ma	nagement		
No exposure scenario for the water compartment w	was build as there are no emission	s to water.	
Other given operational conditions affecting en	vironmental exposure		
For the exposure scenario a tonnage of 12.7 tonnes emissions). As the manufacturing process is a dry	5		
Technical conditions and measures at process le	evel (source) to prevent release		
None			
Technical onsite conditions and measures to rec	duce or limit discharges, air emi	issions and releases to soil	
Risk management measures (RMM) related to the	environment are implemented by	the site.	
For emissions to water:			
As there are no emissions to wastewater, RMM for	r the water compartment are not r	elevant for this sector.	
<u>Emissions to air</u> A synopsis of the applied measures in the sector is fabric or bag filters is reported as 99.9 %.	s summarized in the following tab	le. The reported removal efficiency for cold trap and	
Table Percentage of companies where the following	ng RMMs related to air emissions	are implemented	
Risk management mea	sure	Applied	
Cold trap		100%	
Fabric or bag filters	5	100%	
Organizational measures to prevent/limit releas	se from site		
No specific organizational measures were consider	red.		
Conditions and measures related to municipal s	sewage treatment plant		
None.			
Conditions and measures related to external tre	eatment of waste for disposal		
	1	······	
Detailed information on the amount of mercury su released into the environment was not provided. H			

Additional good practice advice (f Note: The measures reported in this above. They are not subject to oblig 1. carry out an own CSA ar	section ation ation ation section ation at a section at a	have not b d down in	een take Article (n into acco 37 (4) of R	ount in the exposure estimat EACH, Thus, the downstre		scenario		
 v) ii) to notify the use to the Agency, if he does not implement these measures. Use specific measures expected to reduce the predicted exposure beyond the level estimated based on the exposure scenario. 									
		*	*	2	the level estimated based of	n the exposure scenario.			
4.4 Exposure estimation an	a refer	rence to	its sou	irce					
Occupational exposure In the Column "Urinary mercury lev		41 - 00	th	411 f 4 h					
characterisation ratio (RCR) is the q 1 to demonstrate a safe use. For urin	uotient o	of the expo	sure esti	mate and t	he respective DNEL (derive	ed no-effect level) and has			
Workplace		Method used for exposure assessment (refer to introduction)		er to	Urinary mercury levels (RCR)	Method used for inhalation exposure assessment (refer to introduction)	Method used for dermal exposure assessmen t (refer to introducti on)		
Mercury handling		meas	sured dat	a	8.2 µg Hg/g creatinine (0.27)				
Formulation, pre-treatment		meas	sured dat	a	4.3 µg Hg/g creatinine (0.14)				
Mechanical processing		meas	sured dat	a	5.0 µg Hg/g creatinine (0.17)				
Lamp production		measured data		a	2.8 µg Hg/g creatinine (0.09)	not relevant becaus mercury levels inter- relevant paths of e	egrate all		
Handling of lamps / recycling of lamps		measured data		a	1.3 µg Hg/g creatinine (0.04)				
Logistics		measured data		a	3.3 µg Hg/g creatinine (0.11)				
Cleaning, maintenance and handli of waste	ng	measured data		a	2.5 µg Hg/g creatinine (0.08)				
Environmental emissions									
Compartment	Value		Unit		Justification				
Environmental release factor to air (before APC)	1.022		g Hg/t	onnes	Reported by company				
PEC _{added} in soil	4.35 *	10-5	mg Hg	g/kg dw	$\begin{array}{c} C_{local} of 4.35 * 10^{\text{-5}} mg H \\ mg Hg/kg dw \end{array}$	Ig/kg dw and a PEC _{regional} of	of 0.037		
PEC _{total} air	3.01		ng Hg	/m ³	C _{local} of 9.87 * 10 ⁻³ Hg/n	n ³ and a PEC _{regional} of 3.0 ng	g/m ³		
4.5 Guidance to DU to evalu	uate w	hether l	ne wor	ks insid	e the boundaries set l	by the ES			
Occupational exposure									
The DU works inside the boundaries downstream user can demonstrate or operational conditions and activities exposure (reflected in urinary mercu	n his own in quest ry levels	n that his i ion are co s) to a leve	mplement vered by al below	nted risk m the PROC the respect	nanagement measures are ad above). This has to	lequate (given that the proc	cesses,		
		g/g creatini					1 1		
Additionally, the scientific committe assessing exposure:	ee on occ	cupational	exposur	e iimits ha	s set the following limit val	ues, which can also be used	ı wnen		
		g/L blood							
DNEL for workers: ().02 mg l	Hg/m³ air							
4.6 Risk characterisation									
Environment				1					
Compartment	PEC	P	NEC	RCR	Justification				
Soil (direct discharge)	4.35 *	10-2	022 dded)	1.98 * 10 ⁻⁴	$\begin{array}{c} C_{\rm local} of 4.35*10^{\text{-5}}mgH \\ Hg/kgdw \end{array}$	g/kg dw and a PEC _{regional} o	f 0.037 mg		

IU 5 Production of gas discharge lamps

Exposure	e Scenario Fo	ormat (1) ad	dressing uses carried out by	workers				
5.1 Title								
Free short	title		Manufacture and use of mercury for	Manufacture and use of mercury for the production of gas discharge lamps				
Systematic title based on use descriptor			PC 7 SU 3 (industrial uses), SU 16 AC2 (appropriate PROCs and ERCs are given in Section 2 below)					
Processes, t	tasks and/or acti	vities covered	Processes, tasks and/or activities cov	vered are describe	d below.			
5.2 Operation	ational condi	tions and ris	sk management measures					
Brief descri	ption of overall o	perational condi	itions referring to process categories (I	PROC) and enviro	onmental release c	ategories (ERC)		
ERC number	Name		Description	Level of containment	Dispersion of emission sources	Indoor/outdoor		
ERC 3	Formulation in materials	physically or o matrix (materi master batches a plasticizers o	nding of substances, which will be chemically bound into or onto a ial) such as plastics additives in s or plastic compounds. For instance or stabilizers in PVC master-batches rystal growth regulator in films etc.	Open/closed	Industrial	Indoor		
	sites using the sul according to An		ally required to demonstrate strictly co CH)	ontrolled condition	is of use to justify	waiving of		
Workplace			Involved tasks			Involved PROCs		
Mercury ha	andling		delivery (mercury in bottles), weighing, filling of reaction vessel			8b, 9		
Formulatio	n, pre-treatmen	t	thermal cycle in a chamber of the res		2, 4, 22			
Mechanical processing			grinding, milling, bonding (by comp of strips, forming	4, 14, 24				
Lamp production			dosing liquid mercury in the lamp or lamp	capsule in the	9, 21			
Handling o	f lamps / recycli	ng of lamps	packaging of lamps, unloading of en feeder in the recycling unit, disassen	oading of the	21			
Logistics			internal logistics, also including adm	supervision	8b, 9, 21			
Cleaning, n waste	naintenance and	handling of	overhaul and cleaning of production	equipment, maint	enance	8a, 8b		

5.3 Contributing exposure sco	enarios							
5.3.1 Control of workers expo								
Product characteristic								
According to the MEASE approach, th by an assignment of a so-called fugacit the fugacity is based on the dustiness o the process temperature and the melting instead of the substance intrinsic emiss	y class in the MEA f that substance. Wi g point of the substa	SE tool. For operations condu hereas in hot metal operations ance. As a third group, high al	cted with solid substa , fugacity is temperator prasive tasks are based	nces at ambient temperature ure based, taking into account l on the level of abrasion				
Workplace	Use in preparati on	preparati Content in preparation Physical form Emission poter						
Mercury handling		not restricted	liquid	low				
Formulation, pre-treatment		not restricted	liquid	low (high for hot processes)				
Mechanical processing		not restricted	massive / powder	very low - high				
Lamp production		not restricted	liquid or massive	very low - low				
Handling of lamps / recycling of lam	ps article	<300 mg Hg in the lamps or 0.001 wt.% Hg	massive	very low				
Logistics		not restricted	liquid	low				
Cleaning, maintenance and handling waste	of	not restricted	liquid	low				
Amounts used								
The actual tonnage handled per shift is scale of operation (industrial vs. profess the main determinant of the process-int Frequency and duration of use/expos	sional) and level of trinsic emission pot	containment/automation (as r						
Workplace			Duration of expos	ure				
•								
Mercury handling								
Mercury handling Formulation, pre-treatment								
Formulation, pre-treatment			not restricted					
Formulation, pre-treatment Mechanical processing	ps		not restricted					
Formulation, pre-treatment Mechanical processing Lamp production	ps		not restricted					
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam	•		not restricted					
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by risl	of waste k management							
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling	of waste k management process steps is assu		5).	ce the variation in urinary				
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by rist The shift breathing volume during all p Refer to occupational hygiene measure	of waste k management rocess steps is assu s as described belov	w (under "Organisational mea	5).	ce the variation in urinary				
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by rist The shift breathing volume during all p Refer to occupational hygiene measure mercury levels.	of waste k management rocess steps is assu s as described belov	w (under "Organisational mea	5).	-				
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by rist The shift breathing volume during all p Refer to occupational hygiene measure mercury levels. Other given operational conditions a	of waste k management process steps is assu s as described below ffecting workers e	w (under "Organisational mea	rs). sures") which influen	-				
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by risl The shift breathing volume during all p Refer to occupational hygiene measure mercury levels. Other given operational conditions a Workplace	of waste k management rocess steps is assu s as described belov ffecting workers e Room volume	w (under "Organisational mea xposure Indoor or outdoor use	rs). sures") which influen Process temper	ature Process pressure not restricted				
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by risl The shift breathing volume during all p Refer to occupational hygiene measure mercury levels. Other given operational conditions a Workplace Mercury handling	of waste k management rocess steps is assu s as described below ffecting workers e Room volume > 1,000 m ³	w (under "Organisational mea xposure Indoor or outdoor use indoors	rs). sures") which influen Process temper ambient ambient – hig	ature Process pressure not restricted				
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by risl The shift breathing volume during all p Refer to occupational hygiene measure mercury levels. Other given operational conditions a Workplace Mercury handling Formulation, pre-treatment	s of waste k management process steps is assu s as described below ffecting workers e Room volume > 1,000 m ³ > 1,000 m ³	w (under "Organisational mea xposure Indoor or outdoor use indoors indoors	rs). sures") which influen Process temper ambient ambient – hig temperature	ature Process pressure not restricted gh not restricted				
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by rist The shift breathing volume during all p Refer to occupational hygiene measure mercury levels. Other given operational conditions a Workplace Mercury handling Formulation, pre-treatment Mechanical processing	s of waste k management process steps is assu s as described below ffecting workers e Room volume > 1,000 m ³ > 1,000 m ³	w (under "Organisational mea xposure Indoor or outdoor use indoors indoors indoors	rs). sures") which influen Process temper ambient ambient – hig temperature ambient	ature Process pressure not restricted gh not restricted not restricted				
Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of lam Logistics Cleaning, maintenance and handling Human factors not influenced by rist The shift breathing volume during all p Refer to occupational hygiene measure mercury levels. Other given operational conditions a Workplace Mercury handling Formulation, pre-treatment Mechanical processing Lamp production Handling of lamps / recycling of	s of waste k management process steps is assu s as described below ffecting workers e Room volume > 1,000 m ³ > 1,000 m ³	w (under "Organisational mea xposure Indoor or outdoor use indoors indoors indoors indoors indoors	rs). sures") which influen Process temper ambient ambient – hig temperature ambient	ature Process pressure not restricted gh not restricted not restricted not restricted				

Technical conditions and measures at process level (source) to prevent release								
Workplace		Level of containment			Level of segrega	ntion		
Mercury handling			tch preparation in a ve box	not required				
Formulation, pre-treatment			ed vessel, placed in a amber (furnace)	not required				
Mechanical processing		operation under co	ontrolled atmosphere		not required			
Lamp production			(sealed conditions) ng, glove box		not required			
Handling of lamps / recycling of la	amps	not r	equired		not required			
Logistics		not r	equired		not required			
Cleaning, maintenance and handl waste	ing of	not r	equired		not required			
Technical conditions and measure	es to cont	rol dispersion fron	n source towards the	worker				
or aerosol emissions are minimised, installed at unavoidable sources of p be specific to the emission source be from areas of low to high exposure to discharge or recirculation. Details Workplace	process er eing contr potential. s on techn	nissions. The desigr rolled. Area ventilat Air captured by ver	a characteristics of any ion should also be bala ntilation controls may 1	local ex inced su require t en below	khaust ventilation (e.g. ex ich that air flow within a reatment to minimise tox v on a workplace basis. Efficiency of LC (according to	haust hoods) will work area moves		
Mercury handling			local exhaust ventila		MEASE)	-		
Formulation, pre-treatment	Any po	otentially required	the chamber is valve and equipped with a trap		10 ACH	-		
Mechanical processing	separ from th	ration of workers ne emission source	dust/vapour extractor dust/vapour collec		10 ACH	-		
Lamp production	"Frequ	cated above under lency and duration osure". A reduction	local exhaust ventila	ation	78 %	fully automated operation		
Handling of lamps / recycling of lamps	of expo be achi- by th vent pressure by rem	osure duration can eved, for example, he installation of tilated (positive e) control rooms or noving the worker orkplaces involved	local exhaust ventila	ation	78 %	manual operation for the handling of lamps, recycling is conducted in fully automated processes		
Logistics	with r	elevant exposure.	not required		n.a.	-		
Cleaning, maintenance and handling of waste			local exhaust ventila	ation	78 %	-		

Organisational measures to prevent /limit releases, dispersion and exposure

In this section, non-technical measures related to good housekeeping, personal hygiene and to a good culture of occupational hygiene in general are described. Additionally, it is described how exposure to mercury can be assessed based on bio-monitoring and which strategies could be followed for such monitoring to protect worker's health. It is noted that the "Code of Practice" originally developed for the chlor-alkali industry (EUROCHLOR, 2010) has served as a basis to derive the measures as described below. The full text can be downloaded from the EUROCHLOR website.

<u>Creating a culture of safety</u>: Define and communicate a clear policy for controlling occupational exposure to mercury; Ensure managers set the example in terms of personal protection and hygiene; Where possible involve occupational physicians in making workers take control of their own urine mercury levels; Consider making low urine mercury levels a condition of employment, with disciplinary action taken where protective equipment and hygiene procedures are not followed; Involve managers when workers' urine mercury levels exceed action levels; Consider publicising company urine mercury performance to workers via notices and briefings to ensure the topic remains a key priority; Provide detailed training for new personnel on the risks of mercury exposure and the procedures for protection; Provide instruction on specific mercury exposure risks for workers undertaking new tasks; Provide regular refresher courses for all employees on the risks of mercury exposure and the procedures for protection; Involve worker representatives.

<u>Cleaning</u>: Ensure general shop cleanliness is maintained by frequent washing/vacuuming. Clean every workplace at the end of every shift. Ensure adequate lighting to easily locate and appropriately remove any potential mercury spills.

<u>Personal protective equipment</u>: Assess the need to wear respiratory protective equipment (RPE) in production areas. Consider use effective masks accompanied by a compliance policy (ensure proper shaving; ensure workers do not remove RPE in production areas in order to communicate). Where masks are used, employ formal mask cleaning and filter changing strategies; For workers in areas of significant exposure, provide sufficient working clothes to enable daily change into clean clothes. In such cases all work clothing should be cleaned by the employer on a daily basis and is not permitted to leave the work site. Please also consult the section on personal protective equipment below for detailed information on PPE for specific workplaces, processes or tasks.

Personal hygiene: Ensure workers follow simple hygiene rules (e.g. do not bite nails and keep them cut short, avoid touching or scratching face with dirty hands or gloves); Ensure workers do not wipe away sweat with hands or arms, e.g. by providing disposable perspiration towels; Ensure workers use disposable tissues rather than a handkerchief; Prohibit drinking, eating and smoking in production areas; Prevent access to eating and non-production areas in working clothes; Ensure workers as a minimum wash hands, arms, faces and mouths (but preferably shower) and change into personal clothing (or clean coveralls provided by the company) before entering eating areas; For high exposure workplaces, at the end of a shift, workers may need to pass through a room containing washbasins for the cleaning of hands, followed by a 'dirty' room for the removal of working clothes, then through showers into a 'clean' room for changing into personal clothing; Ensure workers handle dirty working clothes with care; Consider making showering obligatory at the end of a shift, and provide towels and soap; Allow no personal belongings to be taken into production areas, and allow no items that have been used in production areas to be taken home.

<u>Urine mercury monitoring</u>: The measurement of mercury in urine (HgU) is considered to be the best determinant of mercury body burden following long-term exposure. Mercury urinary figures reflect the exposure of the 3 or 4 previous months due to the relatively slow elimination of mercury from the human body. The aim of the recommended monitoring programme is for all individual HgU samples to be always below 30 μ g/g creatinine. The frequency of testing should be increased if the levels of mercury in urine increase. For individuals with HgU above 20 μ g/g creatinine, testing frequency should be at least 4 times a year, depending on the pattern of exposure. When levels are below 20 μ g/g creatinine, the testing frequency should mainly be determined by any changes in the working environment, with a minimum of 2 times a year.

Conditions and measures related to personal protection, hygiene and health evaluation								
Workplace	Specification of respiratory protective equipment (RPE)			Further personal protective equipment (PPE)				
Mercury handling	half and full face mask with Hg vapour filter HgP3 EN14387	APF=10	latex and nitrile gloves					
Formulation, pre- treatment	half and full face mask with Hg vapour filter HgP3 EN14387	APF=10	latex and nitrile gloves					
Mechanical processing	half and full face mask with Hg vapour filter HgP3 EN14387	APF=10	latex and nitrile gloves	standard working				
Lamp production	not required	na		clothes (overall) and				
Handling of lamps / recycling of lamps	not required	na	gloves are optional for process steps at ambient temperature	safety shoes				
Logistics	not required	na	temperature					
Cleaning, maintenance and handling of waste	half and full face mask with Hg vapour filter HgP3 EN14387	APF=10	latex and nitrile gloves					

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

Mercury is used in liquid form.							
Amounts used							
Exposure Scenarios based on 4 tonnes/yr at a max	imum RCR of 1 (See se	ction 10.1)					
Data points			2				
Median 2.5							
Min 1							
Max 4							
Selected for Generic Exposure So	cenario		4				
Frequency and duration of use Production occurs 220 days per year per site (med	ion 50 th 0()						
Information type	Emission days to wa	ter per site (d/y)	Emission days to air per site (d/y)				
Data points		ter per site (u/y)	2				
Median	1		267				
	200						
Min	200		200				
Max	200		333				
Selected for Generic Exposure Scenario	200		267				
Environment factors not influenced by risk man	~						
A default dilution factor of 10 is taken into accour Other given operational conditions affecting en		partment after STP.					
during the process. This scenario automatically co	8	0					
Technical conditions and measures at process lo None	evel (source) to preven	t release					
None Technical onsite conditions and measures to rec	duce or limit discharge	s, air emissions and					
None Technical onsite conditions and measures to real Following risk management measures (RMM), rel For emissions to water: Chemical precipitation Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc	s, air emissions and , are implemented by . The removal effici rrtment captures any ction sites report an o	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP.				
None Technical onsite conditions and measures to real Following risk management measures (RMM), rel For emissions to water: • Chemical precipitation • Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga Table: Percentage of companies where the followi	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc	s, air emissions and , are implemented by e. The removal effici urtment captures any ction sites report an o ter emissions are imp	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP.				
None Technical onsite conditions and measures to real Following risk management measures (RMM), rel For emissions to water: Chemical precipitation Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga Table: Percentage of companies where the followi Risk management measure	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc	s, air emissions and , are implemented by e. The removal effici urtment captures any ction sites report an o ter emissions are imp Applied	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP.				
None Technical onsite conditions and measures to real Following risk management measures (RMM), rel For emissions to water: • Chemical precipitation • Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga Table: Percentage of companies where the followi	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc	s, air emissions and , are implemented by e. The removal effici urtment captures any ction sites report an o ter emissions are imp	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP.				
None Technical onsite conditions and measures to rec Following risk management measures (RMM), rel For emissions to water: • Chemical precipitation • Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga Table: Percentage of companies where the followi Risk management measure On-site Waste Water Treatment Plant	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc	s, air emissions and , are implemented by e. The removal effici urtment captures any ction sites report an o ter emissions are imp Applied 100 %	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP.				
None Technical onsite conditions and measures to real Following risk management measures (RMM), rel For emissions to water: Chemical precipitation Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga Table: Percentage of companies where the followi Risk management measure On-site Waste Water Treatment Plant Chemical precipitation Ultra filtration In the actual exposure scenario where the wastewa the fraction of mercury removed by the STP is set applied to agricultural soil. Emissions to air The production sites implement the measures as st reported to range between 95.0 and 99.9 %. Both set	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc ng RMMs related to wa ater is not only treated or at 76 % (CBS, 2008). F	s, air emissions and , are implemented by e. The removal effici urtment captures any ction sites report an of ter emissions are imp Applied 100 % 100 % 100 % n-site but is followed urthermore, by defau	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP. olemented I by a biological treatment (municipal ST ult, the sludge from a municipal STP is ciency of the active carbon filters is				
None Technical onsite conditions and measures to real Following risk management measures (RMM), rel For emissions to water: Chemical precipitation Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga Table: Percentage of companies where the followi Risk management measure On-site Waste Water Treatment Plant Chemical precipitation Ultra filtration Ultra filtration In the actual exposure scenario where the wastewa the fraction of mercury removed by the STP is set applied to agricultural soil. Emissions to air The production sites implement the measures as st reported to range between 95.0 and 99.9 %. Both s Table: Percentage of companies where the followi	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc ng RMMs related to wa ater is not only treated or at 76 % (CBS, 2008). F	s, air emissions and , are implemented by e. The removal effici urtment captures any ction sites report an of ter emissions are imp Applied 100 % 100 % 100 % n-site but is followed urthermore, by defau ole. The removal effi ive carbon filter. emissions are imple	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP. olemented I by a biological treatment (municipal ST ult, the sludge from a municipal STP is ciency of the active carbon filters is				
None Technical onsite conditions and measures to real Following risk management measures (RMM), rel For emissions to water: Chemical precipitation Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga Table: Percentage of companies where the followi Risk management measure On-site Waste Water Treatment Plant Chemical precipitation Ultra filtration In the actual exposure scenario where the wastewa the fraction of mercury removed by the STP is set applied to agricultural soil. Emissions to air The production sites implement the measures as st reported to range between 95.0 and 99.9 %. Both set	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc ng RMMs related to wa ater is not only treated or at 76 % (CBS, 2008). F	s, air emissions and , are implemented by e. The removal effici urtment captures any ction sites report an of ter emissions are imp Applied 100 % 100 % 100 % n-site but is followed urthermore, by defau	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP. olemented I by a biological treatment (municipal ST ult, the sludge from a municipal STP is ciency of the active carbon filters is				
None Technical onsite conditions and measures to red Following risk management measures (RMM), rel For emissions to water: Chemical precipitation Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the ga Table: Percentage of companies where the followi Risk management measure On-site Waste Water Treatment Plant Chemical precipitation Ultra filtration In the actual exposure scenario where the wastewa the fraction of mercury removed by the STP is set applied to agricultural soil. Emissions to air The production sites implement the measures as st reported to range between 95.0 and 99.9 %. Both s Table: Percentage of companies where the followi Risk management measure	duce or limit discharge ated to the environment ed in the following table automatic sewage compa us discharge lamp produc ng RMMs related to wa ter is not only treated or at 76 % (CBS, 2008). F	s, air emissions and , are implemented by e. The removal effici- urtment captures any ction sites report an of ter emissions are imp Applied 100 % 100 % 100 % 100 % n-site but is followed urthermore, by defau- ble. The removal effi- ive carbon filter. emissions are imples	v the sites: ency of the chemical precipitation and u accidental spillage of pollutant substance on-site WWTP. blemented I by a biological treatment (municipal ST is lit, the sludge from a municipal STP is ciency of the active carbon filters is				
None Technical onsite conditions and measures to real Following risk management measures (RMM), rel For emissions to water: • Chemical precipitation • Ultra filtration An overview of the applied measures is summariz filtration are both 99.9 % for one of the sites. An a For those having water emissions, 100 % of the gat Table: Percentage of companies where the followit Risk management measure On-site Waste Water Treatment Plant Chemical precipitation Ultra filtration In the actual exposure scenario where the wastewathe fraction of mercury removed by the STP is set applied to agricultural soil. Emissions to air The production sites implement the measures as st reported to range between 95.0 and 99.9 %. Both strable: Percentage of companies where the followite Risk management measure Active carbon filters	duce or limit discharge ated to the environment ed in the following table automatic sewage compa is discharge lamp produc ng RMMs related to wa uter is not only treated or at 76 % (CBS, 2008). F ated in the following tab sites implemented an act ng RMMs related to air	s, air emissions and , are implemented by e. The removal effici- urtment captures any ction sites report an of ter emissions are imp Applied 100 % 100 % 100 % 100 % n-site but is followed urthermore, by defau- ble. The removal effi- ive carbon filter. emissions are imples	the sites: ency of the chemical precipitation and u accidental spillage of pollutant substanc on-site WWTP. olemented I by a biological treatment (municipal ST ult, the sludge from a municipal STP is ciency of the active carbon filters is				

Conditions and measures related to external treatment of waste for disposal

Detailed information on the amount of mercury substances in waste, type of waste, type of external treatment and fractions of substances released into the environment, was not available. However, waste removal to an off-site location is reported. Waste is kept only on site for a very limited period of time in controlled conditions, until being collected by designated companies.

Conditions and measures related to external recovery of waste

No specific data is available.

Additional good practice advice (for environment) beyond the REACH CSA

Note: The measures reported in this section have not been taken into account in the exposure estimates related to the exposure scenario above. They are not subject to obligation laid down in Article 37 (4) of REACH, Thus, the downstream user is not obliged to

- i) carry out an own CSA and
- ii) ii) to notify the use to the Agency, if he does not implement these measures.

Use specific measures expected to reduce the predicted exposure beyond the level estimated based on the exposure scenario.

5.4 Exposure estimation and reference to its source

Occupational exposure

In the Column "Urinary mercury levels" below, the 90th percentile of the measured urinary mercury levels is provided. The risk characterisation ratio (RCR) is the quotient of the exposure estimate and the respective DNEL (derived no-effect level) and has to be below 1 to demonstrate a safe use. For urinary mercury levels, the RCR is based on a DNEL for 30 μ g Hg/g creatinine in urine.

			,			18 88		
Workplace		Method used for exposure assessment (refer to introduction)		Urinary mercury levels (RCR)		Method used for inhalation exposure assessment (refer to introduction)	Method used for dermal exposure assessment (refer to introduction)	
Mercury handling Formulation, pre-treatment Mechanical processing Lamp production		measured data		8.2 µg Hg/g creatinine (0.27)				
		measured dat			(g/g creatinine (0.14)			
		measured data		5.0 µg Hg/g creatinine (0.17)		not relevant because urinary mercury levels integrate all relevant paths of exposure		
		measured data		2.8 µg Hg/g creatinine (0.09)				
Handling of lamps / recycling lamps	g of	measured	data	1.3 µg Hg/g creatinine (0.04)		integrate an relevant pauls of exposure		
Logistics		measured	data		g/g creatinine (0.11)			
Cleaning, maintenance and handling of waste		measured data		2.5 µg Hg/g creatinine (0.08)				
Environmental emissions								
Compartment	Val	lue	Unit		Justification			
Environmental release factor to aquatic (before on-site STP)	0.2	2	g Hg	/tonnes	Maximum relea	se factor reported by o	company	
Environmental release factor to air (before APC)	8,0	00	g Hg/tonnes Maximum relea		ase factor reported by companies			
PEC _{local} in aquatic pelagic (freshwater to STP)	0.0	28	µg H	g/L	C _{local} of 1.45 * 1	$10^{-5}\mu g$ Hg/L and a PEC $_{regional}of0.028\mu g$ Hg/L		
PEC _{local} in sediment (freshwater to STP)	0.3	0	mg/k	g/kg dw C _{local} of 2.43 * 1 dw		10^{-3} mg Hg/kg dw and a $\text{PEC}_{\text{regional}}$ of 0.3 mg Hg/kg		
PEC _{added} in soil (STP with sludge application)	0.0	108	mg H	ng Hg/kg dw C _{local} of 0.0108 r dw		mg Hg/kg dw and a $\ensuremath{\text{PEC}_{\text{regional}}}\xspace$ of 0.037 mg Hg/kg		
PEC _{added} in soil (STP without sludge application)	0.0107 mg			lg/kg dw	$C_{\rm local} of 0.0107 \mbox{ mg Hg/kg dw}$ and a $PEC_{\rm regional} of 0.037 \mbox{ mg Hg/kg dw}$ dw			
PEC in STP	0.5	1	ng H	g/L	Measured efflue	ent concentration in or	n-site WWTP: 0.01 mg/L	
PEC _{total} air	9.1		ng H	g/m ³	C _{local} of 6.1 ng H	Ig/m ³ and a PEC _{regional}	of 3.0 ng/m ³	

5.5 Guidance to DU to evaluate whether he works inside the boundaries set by the ES								
Occupational exposure								
The DU works inside the boundaries set by the ES if either the proposed risk management measures as described above are met or the downstream user can demonstrate on his own that his implemented risk management measures are adequate (given that the processes, operational conditions and activities in question are covered by the PROCs listed above). This has to be done by showing that they limit the exposure (reflected in urinary mercury levels) to a level below the respective DNEL as given below:								
DNEL for workers:	30 µg Hg	g/g creatinine	in urine					
Additionally, the scientific cor assessing exposure:	Additionally, the scientific committee on occupational exposure limits has set the following limit values, which can also be used when assessing exposure:							
DNEL for workers:	10 µg Hg	g/L blood						
DNEL for workers:	0.02 mg	Hg/m³ air						
5.6 Risk characterisation	on							
Environment								
Compartment	PEC	PNEC	RCR	Justification				
Aquatic pelagic (freshwater to STP)	0.028	0.057	0.49	$C_{local} of 1.45 * 10^{-5} \mu g$ Hg/L and a $PEC_{regional} of 0.028 \mu g$ Hg/L				
PEC _{local} in sediment (freshwater to STP)	0.30	9.3	0.03	C_{local} of 2.43 * 10 3 μg Hg/L and a PEC $_{regional}$ of 0.300 μg Hg/L				
Soil (STP with sludge application)	1049 10000 1049 10000							
Soil (STP without sludge application)	0.0107	0.022 (added)	0.49	$C_{local} of 0.0107 \mu g$ Hg/L and a $PEC_{regional} of 0.037 \mu g$ Hg/L				
Sewage	0.51	2.25	2.29 10-4					

IU 6 Production of dental amalgam

6.1 Title								
0.1 I IIIe								
Free short title		Formu	lation of dental amalg	gam				
			SU 20, SU 0 (For	mulation NACE C	20.5.9 (Manuf	acture of other chemica	l products n.e.c.)),	
Systematic title on use descript					D25100: Dent		(aam))	
F	AC 0 (TARIC 2805 40 90 (mercury – for use in dental amalge (appropriate PROCs and ERCs are given below)							
Processes, tasks and/or activities covered are described below.								
6.2 Operatio	onal con	ditior	is and risk mana	gement measu	ires			
Brief description	n of overa	ll opera	tional conditions refe	rring to process ca	tegories (PRC	DC) and environmental	release categories (ERC)	
ERC number	Name	e Desci		ption	Level of containmer t	Dispersion of emission sources	Indoor/outdoor	
ERC 3	Formula in mater		Mixing or blending which will be physi chemically bound ir matrix (material) su additives in master compounds. For ins plasticizers or stabil master-batches or p growth regulator in films etc.	cally or nto or onto a ch as plastics batches or plastic tance a izers in PVC roducts, crystal	Open/closec	I Industrial	Indoor	
Number of sites information acc				ed to demonstrate .	strictly control	lled conditions of use to		
Workplace		Involv	ved tasks				Involved PROCs	
Mercury hand	ing	receip	t, decanting into mach	ines for automated	l filling		8b, 9	
Formulation / 1 of pillows/caps	0		atic filling and sealing g of mercury with allo			f pillows, if capsuled:	3, 4, 5, 8b, 9	
Packaging			ging of pillows in seal				21	
6.3 Contribu	iting ex	posur	e scenarios					
6.3.1 Contro		-						
Product charac								
According to th by an assignment the fugacity is b the process tem	e MEASE nt of a so- ased on th perature a	called f e dustin and the	ugacity class in the M less of that substance. melting point of the s	EASE tool. For op Whereas in hot me substance. As a th	perations cond etal operations ird group, hig	ucted with solid substant , fugacity is temperature h abrasive tasks are bas	terminants. This is reflecton nces at ambient temperatu based, taking into account sed on the level of abrasion d with a medium emission	
Workplace		Us	e in preparation	Content in prep	paration	Physical form	Emission potential	
Mercury handl	ing		not res	tricted		liquid	low	
Formulation / 1 of pillows/caps	0	amalg	ercury and other gam constituents are			liquid	low	
Packaging			in separate pillows be mixed by dental personnel)	not restrict		solid/massive illows, capsules, plastic cans)	very low	
					· ·			
Amounts used								

Frequency and duration	of use/evposure									
Workplace	lor use/exposure	Duration o	f exposure							
Mercury handling	< 15 minutes (approximately 10 flasks per shift)									
Formulation / Filling										
of pillows/capsules	not restricted									
Packaging										
Human factors not influ	enced by risk management									
•	e during all process steps is a giene measures as described b			the variation in urinary						
Other given operational	conditions affecting worker	rs exposure								
Workplace	Room volume	Indoor or outdoor use	Process temperature	Process pressure						
Mercury handling	not restricted	indoors	1	not restricted						
Formulation / Filling of pillows/capsules	not restricted	indoors	ambient	not restricted						
Packaging	not restricted	indoors		not restricted						
Technical conditions and	d measures at process level	(source) to prevent release								
Workplace	Level of co	ontainment	Level of se	egregation						
Mercury handling	manual filling of automat	ed apportioning machines	not re	quired						
Formulation / Filling of pillows/capsules	closed apportioning machines not required									
Packaging	not re	quired	not re	quired						
Technical conditions and	d measures to control dispe	rsion from source towards t	he worker							
Technical conditions and measures to control dispersion from source towards the worker Engineering and ventilation controls: basic aspects of equipment and facility design should be such that mercury emissions that may contribute to occupational exposures are minimised. Such measures may include enclosure of process equipment such that sources of dust or aerosol emissions are minimised, negative draft exhaust systems to reduce emissions from enclosures and/or local exhaust ventilation installed at unavoidable sources of process emissions. The design characteristics of any local exhaust ventilation (e.g. exhaust hoods) will be specific to the emission source being controlled. Area ventilation should also be balanced such that air flow within a work area moves from areas of low to high exposure potential. Air captured by ventilation controls may require treatment to minimise toxic substances prior to discharge or recirculation. Details on technical measures to control exposure are given below on a workplace basis.										
Workplace	Level of separation	Localised controls (LC)	Efficiency of LC (according to MEASE)	Further information						
Mercury handling	Any potentially required separation of workers from the emission source is indicated above under	local exhaust ventilation	78 %	-						
Formulation / Filling of pillows/capsules	"Frequency and duration of exposure". A reduction of exposure duration can be achieved, for example, by the installation of ventilated (positive	local exhaust ventilation, general exhaust ventilation at bottom	78 % 17 %	automatic apportioning and sealing of pillows/capsules						
Packaging	pressure) control rooms or by removing the worker from workplaces involved with relevant exposure.	not required	n.a.	-						

Organisational measures to prevent /limit releases, dispersion and exposure

In this section, non-technical measures related to good housekeeping, personal hygiene and to a good culture of occupational hygiene in general are described. Additionally, it is described how exposure to mercury can be assessed based on bio-monitoring and which strategies could be followed for such monitoring to protect worker's health. It is noted that the "Code of Practice" originally developed for the chlor-alkali industry (EUROCHLOR, 2010) has served as a basis to derive the measures as described below. The full text can be downloaded from the EUROCHLOR website.

<u>Creating a culture of safety</u>: Define and communicate a clear policy for controlling occupational exposure to mercury; Ensure managers set the example in terms of personal protection and hygiene; Where possible involve occupational physicians in making workers take control of their own urine mercury levels; Consider making low urine mercury levels a condition of employment, with disciplinary action taken where protective equipment and hygiene procedures are not followed; Involve managers when workers' urine mercury levels exceed action levels; Consider publicising company urine mercury performance to workers via notices and briefings to ensure the topic remains a key priority; Provide detailed training for new personnel on the risks of mercury exposure and the procedures for protection; Provide instruction on specific mercury exposure risks for workers undertaking new tasks; Provide regular refresher courses for all employees on the risks of mercury exposure and the procedures for protection; Involve worker representatives.

<u>Cleaning</u>: Ensure general shop cleanliness is maintained by frequent washing/vacuuming. Clean every workplace at the end of every shift. Ensure adequate lighting to easily locate and appropriately remove any potential mercury spills.

<u>Personal protective equipment</u>: Assess the need to wear respiratory protective equipment (RPE) in production areas. Consider use effective masks accompanied by a compliance policy (ensure proper shaving; ensure workers do not remove RPE in production areas in order to communicate). Where masks are used, employ formal mask cleaning and filter changing strategies; For workers in areas of significant exposure, provide sufficient working clothes to enable daily change into clean clothes. In such cases all work clothing should be cleaned by the employer on a daily basis and is not permitted to leave the work site. Please also consult the section on personal protective equipment below for detailed information on PPE for specific workplaces, processes or tasks.

Personal hygiene: Ensure workers follow simple hygiene rules (e.g. do not bite nails and keep them cut short, avoid touching or scratching face with dirty hands or gloves); Ensure workers do not wipe away sweat with hands or arms, e.g. by providing disposable perspiration towels; Ensure workers use disposable tissues rather than a handkerchief; Prohibit drinking, eating and smoking in production areas; Prevent access to eating and non-production areas in working clothes; Ensure workers as a minimum wash hands, arms, faces and mouths (but preferably shower) and change into personal clothing (or clean coveralls provided by the company) before entering eating areas; For high exposure workplaces, at the end of a shift, workers may need to pass through a room containing washbasins for the cleaning of hands, followed by a 'dirty' room for the removal of working clothes with care; Consider making showering obligatory at the end of a shift, and provide towels and soap; Allow no personal belongings to be taken into production areas, and allow no items that have been used in production areas to be taken home.

<u>Urine mercury monitoring</u>: The measurement of mercury in urine (HgU) is considered to be the best determinant of mercury body burden following long-term exposure. Mercury urinary figures reflect the exposure of the 3 or 4 previous months due to the relatively slow elimination of mercury from the human body. The aim of the recommended monitoring programme is for all individual HgU samples to be always below 30 μ g/g creatinine. The frequency of testing should be increased if the levels of mercury in urine increase. For individuals with HgU above 20 μ g/g creatinine, testing frequency should be at least 4 times a year, depending on the pattern of exposure. When levels are below 20 μ g Hg/g creatinine, the testing frequency should mainly be determined by any changes in the working environment, with a minimum of 2 times a year.

Conditions and measures related to personal protection, hygiene and health evaluation								
Workplace	Specification of respiratory protective equipment (RPE)	RPE efficiency (assigned protection factor, APF)	Specification of gloves	Further personal protective equipment (PPE)				
Mercury handling	HgP3	APF=10						
Formulation / Filling of pillows/capsules	not required	na	gloves are optional for process steps at ambient temperature	standard working clothes (overall) and safety shoes				
Packaging	not required	na	temperature					

Any RPE as defined above shall only be worn if the following principles are implemented in parallel: The duration of work (compare with "duration of exposure" above) should reflect the additional physiological stress for the worker due to the breathing resistance and mass of the RPE itself, due to the increased thermal stress by enclosing the head. In addition, it shall be considered that the worker's capability of using tools and of communicating are reduced during the wearing of RPE.

For reasons as given above, the worker should therefore be (i) healthy (especially in view of medical problems that may affect the use of RPE), (ii) have suitable facial characteristics reducing leakages between face and mask (in view of scars and facial hair). The recommended devices above which rely on a tight face seal will not provide the required protection unless they fit the contours of the face properly and securely.

The employer and self-employed persons have legal responsibilities for the maintenance and issue of respiratory protective devices and the management of their correct use in the workplace. Therefore, they should define and document a suitable policy for a respiratory protective device programme including training of the workers.

An overview of the APFs of different RPE (according to BS EN 529:2005) can be found in the glossary of MEASE.

Product characteristics						
Mercury is used in liquid form.						
Amounts used						
Exposure Scenarios based on 30 tonnes/yr at a ma	ximum RCR of 1 (See section 10.1)					
Information type	Site tonna		nes)			
Data points 1						
	30					
Selected for Generic Exposure Scenario	30					
Frequency and duration of use						
Production occurs 252 days per year per site (med	ian 50 th %)					
Information type	Emission days to water per site	(d/y)	Emission days to air per site (d/y)			
Selected for Generic Exposure Scenario	0 (not applicable)		252			
Environment factors not influenced by risk ma	nagement					
For the exposure scenario a tonnage of 30tonnes is emissions). As the manufacturing process is a dry			nt via the air (stack and diffuse air			
None Technical onsite conditions and measures to real Risk management measures (RMM) related to the For emissions to water: As there are no emissions to wastewater, RMM fo Emissions to air There are no RMM implemented for the air compari-	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment.	ions and e site.				
None Technical onsite conditions and measures to rea Risk management measures (RMM) related to the For emissions to water: As there are no emissions to wastewater, RMM for Emissions to air There are no RMM implemented for the air compa- Organizational measures to prevent/limit relea	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment. se from site	ions and e site.				
None Technical onsite conditions and measures to re- Risk management measures (RMM) related to the For emissions to water: As there are no emissions to wastewater, RMM fo Emissions to air There are no RMM implemented for the air compa- Organizational measures to prevent/limit relear No specific organizational measures were conside	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment. se from site red.	ions and e site.				
None Technical onsite conditions and measures to real Risk management measures (RMM) related to the For emissions to water: As there are no emissions to wastewater, RMM for Emissions to air There are no RMM implemented for the air compa Organizational measures to prevent/limit relear No specific organizational measures were conside Conditions and measures related to municipal	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment. se from site red.	ions and e site.				
None Technical onsite conditions and measures to real Risk management measures (RMM) related to the For emissions to water: As there are no emissions to wastewater, RMM for Emissions to air There are no RMM implemented for the air compa Organizational measures to prevent/limit relear No specific organizational measures were conside Conditions and measures related to municipal	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment. se from site red. sewage treatment plant	ions and e site.				
None Technical onsite conditions and measures to real Risk management measures (RMM) related to the For emissions to water: As there are no emissions to wastewater, RMM for Emissions to air There are no RMM implemented for the air comp. Organizational measures to prevent/limit relear No specific organizational measures were conside Conditions and measures related to municipal None. Conditions and measures related to external transitional Detailed information on the amount of mercury su released into the environment was not provided. Environment	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment. se from site red. sewage treatment plant eatment of waste for disposal ibstances in waste, type of waste, typ lowever, waste removal to off-site le	ions and e site. evant for	r this sector.			
None Technical onsite conditions and measures to real Risk management measures (RMM) related to the For emissions to water: As there are no emissions to wastewater, RMM for Emissions to air There are no RMM implemented for the air compa Organizational measures to prevent/limit relead No specific organizational measures were conside Conditions and measures related to municipal a None. Conditions and measures related to external tree Detailed information on the amount of mercury su released into the environment was not provided. F	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment. se from site red. sewage treatment plant eatment of waste for disposal ibstances in waste, type of waste, typ lowever, waste removal to off-site le	ions and e site. evant for	r this sector.			
None Technical onsite conditions and measures to real Risk management measures (RMM) related to the For emissions to water: As there are no emissions to wastewater, RMM for Emissions to air There are no RMM implemented for the air compa Organizational measures to prevent/limit relear No specific organizational measures were conside Conditions and measures related to external transitions Detailed information on the amount of mercury su released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released into the environment was not provided. H Conditions and measures related to external released	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment. se from site red. sewage treatment plant eatment of waste for disposal tbstances in waste, type of waste, typ lowever, waste removal to off-site le covery of waste	ions and e site. evant for	r this sector.			
As there are no emissions to wastewater, RMM for Emissions to air There are no RMM implemented for the air compa Organizational measures to prevent/limit relear No specific organizational measures were conside Conditions and measures related to municipal None.	evel (source) to prevent release duce or limit discharges, air emiss environment are implemented by th or the water compartment are not rele artment. se from site red. sewage treatment plant eatment of waste for disposal tibstances in waste, type of waste, typ Iowever, waste removal to off-site le covery of waste ent) beyond the REACH CSA not been taken into account in the ex in in Article 37 (4) of REACH, Thus	ions and e site. evant for be of ext be of ext	er this sector.			

6.4 Exposure estimation	ation a	nd referen	ce to	its so	ource					
Occupational exposure										
characterisation ratio (RC	R) is the	quotient of the	e expo	sure e	stimate and	the respect	urinary mercury levels is provide the provided structure of the provid	t level) and has to be below		
Workplace	expo	xposure assessment (PCR) inhalation exposure exp					Method used for dermal exposure assessment (refer to introduction)			
Mercury handling	Itercury handling analogous data 8.2 µg Hg/g creatinine (0.27)									
Formulation / Filling of pillows/capsules	a	analogous data			4.3 μg Hg/g cr (0.14)		not relevant because urinary mercury levels integ all relevant paths of exposure			
Packaging	a	nalogous data		1.3 µg Hg/g creatinine (0.04)				×		
Environmental emission	S									
Compartment		Value		Unit		Justifica	tion			
Environmental release to air (before APC)	/ US g Hg/tonnes Reported by company									
PEC _{added} in soil		7.09 * 10 ⁻⁵	mg Hg/kg dw C _{local} of 7.09 * 10 ⁻⁵ mg Hg/kg dw and a PEC _{regional} of 0.03 Hg/kg dw					a PEC _{regional} of 0.037 mg		
PEC _{total} air		3.2		ng Hg	/m ³	$C_{\text{local}} of 0.2 \; ng \; Hg/m^3$ and a $PEC_{\text{regional}} of \; 3.0 \; ng/m^3$				
6.5 Guidance to DU	to eva	luate whet	her l	he wo	orks insid	e the bo	undaries set by the ES	5		
Occupational exposure										
downstream user can dem operational conditions and exposure (reflected in urin	onstrate d activiti	on his own that es in question a cury levels) to	at his i are cov a leve	mplen vered el belov	nented risk r by the PRO w the respec	nanagemen Cs listed ab	ement measures as described t measures are adequate (giv ove). This has to be done by as given below:	en that the processes,		
DNEL for workers: Additionally, the scientifi assessing exposure:	c commi	30 µg Hg/g c ttee on occupa				as set the fo	llowing limit values, which	can also be used when		
DNEL for workers:		10 µg Hg/L b	lood							
DNEL for workers:		0.02 mg Hg/r	n³ air							
6.6 Risk characteri	sation									
Environment										
Compartment		PEC	PNI	EC	RCR	Justifica	tion			
Soil	FEC FNEC KCK Justification $7.09 * 10^{-5}$ 0.022 $3.22 *$ C_{local} of $7.09 * 10^{-5}$ mg Hg/kg dw and a PEC _{regional} of 0.037 mg Hg/kg dw							a PEC _{regional} of 0.037 mg		

End of the Safety Data Sheet